/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012,2013,2014 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * @file chschd.h * @brief Scheduler macros and structures. * * @addtogroup scheduler * @{ */ #ifndef _CHSCHD_H_ #define _CHSCHD_H_ /*===========================================================================*/ /* Module constants. */ /*===========================================================================*/ /** * @name Wakeup status codes * @{ */ #define MSG_OK 0 /**< @brief Normal wakeup message. */ #define MSG_TIMEOUT -1 /**< @brief Wakeup caused by a timeout condition. */ #define MSG_RESET -2 /**< @brief Wakeup caused by a reset condition. */ /** @} */ /** * @name Priority constants * @{ */ #define NOPRIO 0 /**< @brief Ready list header priority. */ #define IDLEPRIO 1 /**< @brief Idle thread priority. */ #define LOWPRIO 2 /**< @brief Lowest user priority. */ #define NORMALPRIO 64 /**< @brief Normal user priority. */ #define HIGHPRIO 127 /**< @brief Highest user priority. */ #define ABSPRIO 255 /**< @brief Greatest possible priority. */ /** @} */ /** * @name Thread states * @{ */ #define CH_STATE_READY 0 /**< @brief Waiting on the ready list. */ #define CH_STATE_CURRENT 1 /**< @brief Currently running. */ #define CH_STATE_WTSTART 2 /**< @brief Created but not started. */ #define CH_STATE_SUSPENDED 3 /**< @brief Suspended state. */ #define CH_STATE_QUEUED 4 /**< @brief Waiting on an I/O queue. */ #define CH_STATE_WTSEM 5 /**< @brief Waiting on a semaphore. */ #define CH_STATE_WTMTX 6 /**< @brief Waiting on a mutex. */ #define CH_STATE_WTCOND 7 /**< @brief Waiting on a condition variable. */ #define CH_STATE_SLEEPING 8 /**< @brief Waiting in @p chThdSleep() or @p chThdSleepUntil(). */ #define CH_STATE_WTEXIT 9 /**< @brief Waiting in @p chThdWait(). */ #define CH_STATE_WTOREVT 10 /**< @brief Waiting for an event. */ #define CH_STATE_WTANDEVT 11 /**< @brief Waiting for several events. */ #define CH_STATE_SNDMSGQ 12 /**< @brief Sending a message, in queue.*/ #define CH_STATE_SNDMSG 13 /**< @brief Sent a message, waiting answer. */ #define CH_STATE_WTMSG 14 /**< @brief Waiting for a message. */ #define CH_STATE_FINAL 15 /**< @brief Thread terminated. */ /** * @brief Thread states as array of strings. * @details Each element in an array initialized with this macro can be * indexed using the numeric thread state values. */ #define CH_STATE_NAMES \ "READY", "CURRENT", "WTSTART", "SUSPENDED", "QUEUED", "WTSEM", "WTMTX", \ "WTCOND", "SLEEPING", "WTEXIT", "WTOREVT", "WTANDEVT", "SNDMSGQ", \ "SNDMSG", "WTMSG", "FINAL" /** @} */ /** * @name Thread flags and attributes * @{ */ #define CH_FLAG_MODE_MASK 3 /**< @brief Thread memory mode mask. */ #define CH_FLAG_MODE_STATIC 0 /**< @brief Static thread. */ #define CH_FLAG_MODE_HEAP 1 /**< @brief Thread allocated from a Memory Heap. */ #define CH_FLAG_MODE_MEMPOOL 2 /**< @brief Thread allocated from a Memory Pool. */ #define CH_FLAG_TERMINATE 4 /**< @brief Termination requested flag. */ /** @} */ /** * @name Working Areas and Alignment */ /** * @brief Enforces a correct alignment for a stack area size value. * * @param[in] n the stack size to be aligned to the next stack * alignment boundary * @return The aligned stack size. * * @api */ #define THD_ALIGN_STACK_SIZE(n) \ ((((n) - 1) | (sizeof(stkalign_t) - 1)) + 1) /** * @brief Calculates the total Working Area size. * * @param[in] n the stack size to be assigned to the thread * @return The total used memory in bytes. * * @api */ #define THD_WORKING_AREA_SIZE(n) \ THD_ALIGN_STACK_SIZE(sizeof(thread_t) + PORT_WA_SIZE(n)) /** * @brief Static working area allocation. * @details This macro is used to allocate a static thread working area * aligned as both position and size. * * @param[in] s the name to be assigned to the stack array * @param[in] n the stack size to be assigned to the thread * * @api */ #define THD_WORKING_AREA(s, n) \ stkalign_t s[THD_WORKING_AREA_SIZE(n) / sizeof(stkalign_t)] /** @} */ /** * @name Threads abstraction macros */ /** * @brief Thread declaration macro. * @note Thread declarations should be performed using this macro because * the port layer could define optimizations for thread functions. */ #define THD_FUNCTION(tname, arg) PORT_THD_FUNCTION(tname, arg) /** @} */ /*===========================================================================*/ /* Module pre-compile time settings. */ /*===========================================================================*/ /*===========================================================================*/ /* Derived constants and error checks. */ /*===========================================================================*/ /*===========================================================================*/ /* Module data structures and types. */ /*===========================================================================*/ /** * @brief Generic threads single link list, it works like a stack. */ struct ch_threads_list { thread_t *p_next; /**< @brief Next in the list/queue. */ }; /** * @brief Generic threads bidirectional linked list header and element. */ struct ch_threads_queue{ thread_t *p_next; /**< @brief Next in the list/queue. */ thread_t *p_prev; /**< @brief Previous in the queue. */ }; /** * @brief Structure representing a thread. * @note Not all the listed fields are always needed, by switching off some * not needed ChibiOS/RT subsystems it is possible to save RAM space * by shrinking this structure. */ struct ch_thread { thread_t *p_next; /**< @brief Next in the list/queue. */ /* End of the fields shared with the threads_list_t structure.*/ thread_t *p_prev; /**< @brief Previous in the queue. */ /* End of the fields shared with the threads_queue_t structure.*/ tprio_t p_prio; /**< @brief Thread priority. */ struct context p_ctx; /**< @brief Processor context. */ #if CH_CFG_USE_REGISTRY || defined(__DOXYGEN__) thread_t *p_newer; /**< @brief Newer registry element. */ thread_t *p_older; /**< @brief Older registry element. */ #endif /* End of the fields shared with the ReadyList structure. */ #if CH_CFG_USE_REGISTRY || defined(__DOXYGEN__) /** * @brief Thread name or @p NULL. */ const char *p_name; #endif #if CH_DBG_ENABLE_STACK_CHECK || defined(__DOXYGEN__) /** * @brief Thread stack boundary. */ stkalign_t *p_stklimit; #endif /** * @brief Current thread state. */ tstate_t p_state; /** * @brief Various thread flags. */ tmode_t p_flags; #if CH_CFG_USE_DYNAMIC || defined(__DOXYGEN__) /** * @brief References to this thread. */ trefs_t p_refs; #endif /** * @brief Number of ticks remaining to this thread. */ #if (CH_CFG_TIME_QUANTUM > 0) || defined(__DOXYGEN__) tslices_t p_preempt; #endif #if CH_DBG_THREADS_PROFILING || defined(__DOXYGEN__) /** * @brief Thread consumed time in ticks. * @note This field can overflow. */ volatile systime_t p_time; #endif /** * @brief State-specific fields. * @note All the fields declared in this union are only valid in the * specified state or condition and are thus volatile. */ union { /** * @brief Thread wakeup code. * @note This field contains the low level message sent to the thread * by the waking thread or interrupt handler. The value is valid * after exiting the @p chSchWakeupS() function. */ msg_t rdymsg; /** * @brief Thread exit code. * @note The thread termination code is stored in this field in order * to be retrieved by the thread performing a @p chThdWait() on * this thread. */ msg_t exitcode; /** * @brief Pointer to a generic "wait" object. * @note This field is used to get a generic pointer to a synchronization * object and is valid when the thread is in one of the wait * states. */ void *wtobjp; #if CH_CFG_USE_EVENTS || defined(__DOXYGEN__) /** * @brief Enabled events mask. * @note This field is only valid while the thread is in the * @p CH_STATE_WTOREVT or @p CH_STATE_WTANDEVT states. */ eventmask_t ewmask; #endif } p_u; #if CH_CFG_USE_WAITEXIT || defined(__DOXYGEN__) /** * @brief Termination waiting list. */ threads_list_t p_waiting; #endif #if CH_CFG_USE_MESSAGES || defined(__DOXYGEN__) /** * @brief Messages queue. */ threads_queue_t p_msgqueue; /** * @brief Thread message. */ msg_t p_msg; #endif #if CH_CFG_USE_EVENTS || defined(__DOXYGEN__) /** * @brief Pending events mask. */ eventmask_t p_epending; #endif #if CH_CFG_USE_MUTEXES || defined(__DOXYGEN__) /** * @brief List of the mutexes owned by this thread. * @note The list is terminated by a @p NULL in this field. */ struct mutex *p_mtxlist; /** * @brief Thread's own, non-inherited, priority. */ tprio_t p_realprio; #endif #if (CH_CFG_USE_DYNAMIC && CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__) /** * @brief Memory Pool where the thread workspace is returned. */ void *p_mpool; #endif #if CH_DBG_STATISTICS || defined(__DOXYGEN__) /** * @brief Thread statistics. */ time_measurement_t p_stats; #endif #if defined(CH_CFG_THREAD_EXTRA_FIELDS) /* Extra fields defined in chconf.h.*/ CH_CFG_THREAD_EXTRA_FIELDS #endif }; /** * @extends virtual_timers_list_t * * @brief Virtual Timer descriptor structure. */ struct ch_virtual_timer { virtual_timer_t *vt_next; /**< @brief Next timer in the list. */ virtual_timer_t *vt_prev; /**< @brief Previous timer in the list. */ systime_t vt_delta; /**< @brief Time delta before timeout. */ vtfunc_t vt_func; /**< @brief Timer callback function pointer. */ void *vt_par; /**< @brief Timer callback function parameter. */ }; /** * @brief Virtual timers list header. * @note The timers list is implemented as a double link bidirectional list * in order to make the unlink time constant, the reset of a virtual * timer is often used in the code. */ struct ch_virtual_timers_list { virtual_timer_t *vt_next; /**< @brief Next timer in the delta list. */ virtual_timer_t *vt_prev; /**< @brief Last timer in the delta list. */ systime_t vt_delta; /**< @brief Must be initialized to -1. */ #if CH_CFG_ST_TIMEDELTA == 0 || defined(__DOXYGEN__) volatile systime_t vt_systime; /**< @brief System Time counter. */ #endif #if CH_CFG_ST_TIMEDELTA > 0 || defined(__DOXYGEN__) /** * @brief System time of the last tick event. */ systime_t vt_lasttime;/**< @brief System time of the last tick event. */ #endif }; /** * @extends threads_queue_t */ struct ch_ready_list { threads_queue_t r_queue; /**< @brief Threads queue. */ tprio_t r_prio; /**< @brief This field must be initialized to zero. */ struct context r_ctx; /**< @brief Not used, present because offsets. */ #if CH_CFG_USE_REGISTRY || defined(__DOXYGEN__) thread_t *r_newer; /**< @brief Newer registry element. */ thread_t *r_older; /**< @brief Older registry element. */ #endif /* End of the fields shared with the thread_t structure.*/ thread_t *r_current; /**< @brief The currently running thread. */ }; /** * @brief System debug data structure. */ struct ch_system_debug { /** * @brief Pointer to the panic message. * @details This pointer is meant to be accessed through the debugger, it is * written once and then the system is halted. * @note Accesses to this pointer must never be optimized out so the * field itself is declared volatile. */ const char * volatile panic_msg; #if CH_DBG_SYSTEM_STATE_CHECK || defined(__DOXYGEN__) /** * @brief ISR nesting level. */ cnt_t isr_cnt; /** * @brief Lock nesting level. */ cnt_t lock_cnt; #endif #if CH_DBG_ENABLE_TRACE || defined(__DOXYGEN__) /** * @brief Public trace buffer. */ ch_trace_buffer_t trace_buffer; #endif }; /** * @brief System data structure. * @note This structure contain all the data areas used by the OS except * stacks. */ struct ch_system { /** * @brief Ready list header. */ ready_list_t rlist; /** * @brief Virtual timers delta list header. */ virtual_timers_list_t vtlist; /** * @brief System debug. */ system_debug_t dbg; /** * @brief Main thread descriptor. */ thread_t mainthread; #if CH_CFG_USE_TM || defined(__DOXYGEN__) /** * @brief Time measurement calibration data. */ tm_calibration_t tm; #endif #if CH_DBG_STATISTICS || defined(__DOXYGEN__) /** * @brief Global kernel statistics. */ kernel_stats_t kernel_stats; #endif #if !CH_CFG_NO_IDLE_THREAD /** * @brief Idle thread working area. */ THD_WORKING_AREA(idle_thread_wa, PORT_IDLE_THREAD_STACK_SIZE); #endif }; /*===========================================================================*/ /* Module macros. */ /*===========================================================================*/ /** * @brief Returns the priority of the first thread on the given ready list. * * @notapi */ #define firstprio(rlp) ((rlp)->p_next->p_prio) /** * @brief Current thread pointer access macro. * @note This macro is not meant to be used in the application code but * only from within the kernel, use the @p chThdSelf() API instead. * @note It is forbidden to use this macro in order to change the pointer * (currp = something), use @p setcurrp() instead. */ #define currp ch.rlist.r_current /** * @brief Current thread pointer change macro. * @note This macro is not meant to be used in the application code but * only from within the kernel. * * @notapi */ #define setcurrp(tp) (currp = (tp)) /*===========================================================================*/ /* External declarations. */ /*===========================================================================*/ #if !defined(__DOXYGEN__) extern ch_system_t ch; #endif /* * Scheduler APIs. */ #ifdef __cplusplus extern "C" { #endif void _scheduler_init(void); thread_t *chSchReadyI(thread_t *tp); void chSchGoSleepS(tstate_t newstate); msg_t chSchGoSleepTimeoutS(tstate_t newstate, systime_t time); void chSchWakeupS(thread_t *tp, msg_t msg); void chSchRescheduleS(void); bool chSchIsPreemptionRequired(void); void chSchDoRescheduleBehind(void); void chSchDoRescheduleAhead(void); void chSchDoReschedule(void); #if !CH_CFG_OPTIMIZE_SPEED void queue_prio_insert(thread_t *tp, threads_queue_t *tqp); void queue_insert(thread_t *tp, threads_queue_t *tqp); thread_t *queue_fifo_remove(threads_queue_t *tqp); thread_t *queue_lifo_remove(threads_queue_t *tqp); thread_t *queue_dequeue(thread_t *tp); void list_insert(thread_t *tp, threads_list_t *tlp); thread_t *list_remove(threads_list_t *tlp); #endif /* CH_CFG_OPTIMIZE_SPEED */ #ifdef __cplusplus } #endif /*===========================================================================*/ /* Module inline functions. */ /*===========================================================================*/ /** * @brief Threads list initialization. * * @param[in] tlp pointer to the threads list object * * @notapi */ static inline void list_init(threads_list_t *tlp) { tlp->p_next = (thread_t *)tlp; } /** * @brief Evaluates to @p true if the specified threads list is empty. * * @param[in] tlp pointer to the threads list object * @return The status of the list. * * @notapi */ static inline bool list_isempty(threads_list_t *tlp) { return (bool)(tlp->p_next == (thread_t *)tlp); } /** * @brief Evaluates to @p true if the specified threads list is not empty. * * @param[in] tlp pointer to the threads list object * @return The status of the list. * * @notapi */ static inline bool list_notempty(threads_list_t *tlp) { return (bool)(tlp->p_next != (thread_t *)tlp); } /** * @brief Threads queue initialization. * * @param[in] tqp pointer to the threads queue object * * @notapi */ static inline void queue_init(threads_queue_t *tqp) { tqp->p_next = tqp->p_prev = (thread_t *)tqp; } /** * @brief Evaluates to @p true if the specified threads queue is empty. * * @param[in] tqp pointer to the threads queue object * @return The status of the queue. * * @notapi */ static inline bool queue_isempty(threads_queue_t *tqp) { return (bool)(tqp->p_next == (thread_t *)tqp); } /** * @brief Evaluates to @p true if the specified threads queue is not empty. * * @param[in] tqp pointer to the threads queue object * @return The status of the queue. * * @notapi */ static inline bool queue_notempty(threads_queue_t *tqp) { return (bool)(tqp->p_next != (thread_t *)tqp); } /* If the performance code path has been chosen then all the following functions are inlined into the various kernel modules.*/ #if CH_CFG_OPTIMIZE_SPEED static inline void list_insert(thread_t *tp, threads_list_t *tlp) { tp->p_next = tlp->p_next; tlp->p_next = tp; } static inline thread_t *list_remove(threads_list_t *tlp) { thread_t *tp = tlp->p_next; tlp->p_next = tp->p_next; return tp; } static inline void queue_prio_insert(thread_t *tp, threads_queue_t *tqp) { thread_t *cp = (thread_t *)tqp; do { cp = cp->p_next; } while ((cp != (thread_t *)tqp) && (cp->p_prio >= tp->p_prio)); tp->p_next = cp; tp->p_prev = cp->p_prev; tp->p_prev->p_next = cp->p_prev = tp; } static inline void queue_insert(thread_t *tp, threads_queue_t *tqp) { tp->p_next = (thread_t *)tqp; tp->p_prev = tqp->p_prev; tp->p_prev->p_next = tqp->p_prev = tp; } static inline thread_t *queue_fifo_remove(threads_queue_t *tqp) { thread_t *tp = tqp->p_next; (tqp->p_next = tp->p_next)->p_prev = (thread_t *)tqp; return tp; } static inline thread_t *queue_lifo_remove(threads_queue_t *tqp) { thread_t *tp = tqp->p_prev; (tqp->p_prev = tp->p_prev)->p_next = (thread_t *)tqp; return tp; } static inline thread_t *queue_dequeue(thread_t *tp) { tp->p_prev->p_next = tp->p_next; tp->p_next->p_prev = tp->p_prev; return tp; } #endif /* CH_CFG_OPTIMIZE_SPEED */ /** * @brief Determines if the current thread must reschedule. * @details This function returns @p true if there is a ready thread with * higher priority. * * @return The priorities situation. * @retval false if rescheduling is not necessary. * @retval true if there is a ready thread at higher priority. * * @iclass */ static inline bool chSchIsRescRequiredI(void) { chDbgCheckClassI(); return firstprio(&ch.rlist.r_queue) > currp->p_prio; } /** * @brief Determines if yielding is possible. * @details This function returns @p true if there is a ready thread with * equal or higher priority. * * @return The priorities situation. * @retval false if yielding is not possible. * @retval true if there is a ready thread at equal or higher priority. * * @sclass */ static inline bool chSchCanYieldS(void) { chDbgCheckClassS(); return firstprio(&ch.rlist.r_queue) >= currp->p_prio; } /** * @brief Yields the time slot. * @details Yields the CPU control to the next thread in the ready list with * equal or higher priority, if any. * * @sclass */ static inline void chSchDoYieldS(void) { chDbgCheckClassS(); if (chSchCanYieldS()) chSchDoRescheduleBehind(); } /** * @brief Inline-able preemption code. * @details This is the common preemption code, this function must be invoked * exclusively from the port layer. * * @special */ static inline void chSchPreemption(void) { tprio_t p1 = firstprio(&ch.rlist.r_queue); tprio_t p2 = currp->p_prio; #if CH_CFG_TIME_QUANTUM > 0 if (currp->p_preempt) { if (p1 > p2) chSchDoRescheduleAhead(); } else { if (p1 >= p2) chSchDoRescheduleBehind(); } #else /* CH_CFG_TIME_QUANTUM == 0 */ if (p1 >= p2) chSchDoRescheduleAhead(); #endif /* CH_CFG_TIME_QUANTUM == 0 */ } #endif /* _CHSCHD_H_ */ /** @} */