/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
2011,2012 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
Parts of this file have been contributed by Matthias Blaicher.
*/
/**
* @file mmc_spi.c
* @brief MMC over SPI driver code.
*
* @addtogroup MMC_SPI
* @{
*/
#include
#include "ch.h"
#include "hal.h"
#if HAL_USE_MMC_SPI || defined(__DOXYGEN__)
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local variables. */
/*===========================================================================*/
/* Forward declarations required by mmc_vmt.*/
bool_t mmc_read(void *instance, uint32_t startblk,
uint8_t *buffer, uint32_t n);
bool_t mmc_write(void *instance, uint32_t startblk,
const uint8_t *buffer, uint32_t n);
/**
* @brief Virtual methods table.
*/
static const struct MMCDriverVMT mmc_vmt = {
(bool_t (*)(void *))mmc_lld_is_card_inserted,
(bool_t (*)(void *))mmc_lld_is_write_protected,
(bool_t (*)(void *))mmcConnect,
(bool_t (*)(void *))mmcDisconnect,
mmc_read,
mmc_write,
(bool_t (*)(void *))mmcSync,
(bool_t (*)(void *, BlockDeviceInfo *))mmcGetInfo
};
/**
* @brief Lookup table for CRC-7 ( based on polynomial x^7 + x^3 + 1).
*/
static const uint8_t crc7_lookup_table[256] = {
0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53,
0x6c, 0x65, 0x7e, 0x77, 0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26,
0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e, 0x32, 0x3b, 0x20, 0x29,
0x16, 0x1f, 0x04, 0x0d, 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14, 0x63, 0x6a, 0x71, 0x78,
0x47, 0x4e, 0x55, 0x5c, 0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b,
0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13, 0x7d, 0x74, 0x6f, 0x66,
0x59, 0x50, 0x4b, 0x42, 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69, 0x1e, 0x17, 0x0c, 0x05,
0x3a, 0x33, 0x28, 0x21, 0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70,
0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38, 0x41, 0x48, 0x53, 0x5a,
0x65, 0x6c, 0x77, 0x7e, 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67, 0x10, 0x19, 0x02, 0x0b,
0x34, 0x3d, 0x26, 0x2f, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x6a, 0x63, 0x78, 0x71,
0x4e, 0x47, 0x5c, 0x55, 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a, 0x6d, 0x64, 0x7f, 0x76,
0x49, 0x40, 0x5b, 0x52, 0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03,
0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b, 0x17, 0x1e, 0x05, 0x0c,
0x33, 0x3a, 0x21, 0x28, 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31, 0x46, 0x4f, 0x54, 0x5d,
0x62, 0x6b, 0x70, 0x79
};
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
bool_t mmc_read(void *instance, uint32_t startblk,
uint8_t *buffer, uint32_t n) {
if (mmcStartSequentialRead((MMCDriver *)instance, startblk))
return TRUE;
while (n > 0) {
if (mmcSequentialRead((MMCDriver *)instance, buffer))
return TRUE;
buffer += MMCSD_BLOCK_SIZE;
n--;
}
if (mmcStopSequentialRead((MMCDriver *)instance))
return TRUE;
return FALSE;
}
bool_t mmc_write(void *instance, uint32_t startblk,
const uint8_t *buffer, uint32_t n) {
if (mmcStartSequentialWrite((MMCDriver *)instance, startblk))
return TRUE;
while (n > 0) {
if (mmcSequentialWrite((MMCDriver *)instance, buffer))
return TRUE;
buffer += MMCSD_BLOCK_SIZE;
n--;
}
if (mmcStopSequentialWrite((MMCDriver *)instance))
return TRUE;
return FALSE;
}
/**
* @brief Calculate the MMC standard CRC-7 based on a lookup table.
*
* @param[in] crc start value for CRC
* @param[in] buffer pointer to data buffer
* @param[in] len length of data
* @return Calculated CRC
*/
static uint8_t crc7(uint8_t crc, const uint8_t *buffer, size_t len) {
while (len--)
crc = crc7_lookup_table[(crc << 1) ^ (*buffer++)];
return crc;
}
/**
* @brief Insertion monitor timer callback function.
*
* @param[in] p pointer to the @p MMCDriver object
*
* @notapi
*/
static void tmrfunc(void *p) {
MMCDriver *mmcp = p;
chSysLockFromIsr();
if (mmcp->cnt > 0) {
if (mmc_lld_is_card_inserted(mmcp)) {
if (--mmcp->cnt == 0) {
mmcp->state = MMC_INSERTED;
chEvtBroadcastI(&mmcp->inserted_event);
}
}
else
mmcp->cnt = MMC_POLLING_INTERVAL;
}
else {
if (!mmc_lld_is_card_inserted(mmcp)) {
mmcp->state = MMC_WAIT;
mmcp->cnt = MMC_POLLING_INTERVAL;
chEvtBroadcastI(&mmcp->removed_event);
}
}
chVTSetI(&mmcp->vt, MS2ST(MMC_POLLING_DELAY), tmrfunc, mmcp);
chSysUnlockFromIsr();
}
/**
* @brief Waits an idle condition.
*
* @param[in] mmcp pointer to the @p MMCDriver object
*
* @notapi
*/
static void wait(MMCDriver *mmcp) {
int i;
uint8_t buf[4];
for (i = 0; i < 16; i++) {
spiReceive(mmcp->config->spip, 1, buf);
if (buf[0] == 0xFF)
return;
}
/* Looks like it is a long wait.*/
while (TRUE) {
spiReceive(mmcp->config->spip, 1, buf);
if (buf[0] == 0xFF)
break;
#ifdef MMC_NICE_WAITING
/* Trying to be nice with the other threads.*/
chThdSleep(1);
#endif
}
}
/**
* @brief Sends a command header.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[in] cmd the command id
* @param[in] arg the command argument
*
* @notapi
*/
static void send_hdr(MMCDriver *mmcp, uint8_t cmd, uint32_t arg) {
uint8_t buf[6];
/* Wait for the bus to become idle if a write operation was in progress.*/
wait(mmcp);
buf[0] = 0x40 | cmd;
buf[1] = arg >> 24;
buf[2] = arg >> 16;
buf[3] = arg >> 8;
buf[4] = arg;
/* Calculate CRC for command header, shift to right position, add stop bit.*/
buf[5] = ((crc7(0, buf, 5) & 0x7F) << 1) | 0x01;
spiSend(mmcp->config->spip, 6, buf);
}
/**
* @brief Receives a single byte response.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @return The response as an @p uint8_t value.
* @retval 0xFF timed out.
*
* @notapi
*/
static uint8_t recvr1(MMCDriver *mmcp) {
int i;
uint8_t r1[1];
for (i = 0; i < 9; i++) {
spiReceive(mmcp->config->spip, 1, r1);
if (r1[0] != 0xFF)
return r1[0];
}
return 0xFF;
}
/**
* @brief Receives a three byte response.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[out] buffer pointer to four bytes wide buffer
* @return First response byte as an @p uint8_t value.
* @retval 0xFF timed out.
*
* @notapi
*/
static uint8_t recvr3(MMCDriver *mmcp, uint8_t* buffer) {
uint8_t r1;
r1 = recvr1(mmcp);
spiReceive(mmcp->config->spip, 4, buffer);
return r1;
}
/**
* @brief Sends a command an returns a single byte response.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[in] cmd the command id
* @param[in] arg the command argument
* @return The response as an @p uint8_t value.
* @retval 0xFF timed out.
*
* @notapi
*/
static uint8_t send_command_R1(MMCDriver *mmcp, uint8_t cmd, uint32_t arg) {
uint8_t r1;
spiSelect(mmcp->config->spip);
send_hdr(mmcp, cmd, arg);
r1 = recvr1(mmcp);
spiUnselect(mmcp->config->spip);
return r1;
}
/**
* @brief Sends a command which returns a five bytes response (R3).
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[in] cmd the command id
* @param[in] arg the command argument
* @param[out] response pointer to four bytes wide uint8_t buffer
* @return The first byte of the response (R1) as an @p
* uint8_t value.
* @retval 0xFF timed out.
*
* @notapi
*/
static uint8_t send_command_R3(MMCDriver *mmcp, uint8_t cmd, uint32_t arg,
uint8_t *response) {
uint8_t r1;
spiSelect(mmcp->config->spip);
send_hdr(mmcp, cmd, arg);
r1 = recvr3(mmcp, response);
spiUnselect(mmcp->config->spip);
return r1;
}
/**
* @brief Reads the CSD.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[out] csd pointer to the CSD buffer
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @notapi
*/
static bool_t read_CxD(MMCDriver *mmcp, uint8_t cmd, uint32_t cxd[4]) {
unsigned i;
uint8_t *bp, buf[16];
spiSelect(mmcp->config->spip);
send_hdr(mmcp, cmd, 0);
if (recvr1(mmcp) != 0x00) {
spiUnselect(mmcp->config->spip);
return TRUE;
}
/* Wait for data availability.*/
for (i = 0; i < MMC_WAIT_DATA; i++) {
spiReceive(mmcp->config->spip, 1, buf);
if (buf[0] == 0xFE) {
uint32_t *wp;
spiReceive(mmcp->config->spip, 16, buf);
bp = buf;
for (wp = &cxd[3]; wp >= cxd; wp--) {
*wp = ((uint32_t)bp[0] << 24) | ((uint32_t)bp[1] << 16) |
((uint32_t)bp[2] << 8) | (uint32_t)bp[3];
bp += 4;
}
/* CRC ignored then end of transaction. */
spiIgnore(mmcp->config->spip, 2);
spiUnselect(mmcp->config->spip);
return FALSE;
}
}
return TRUE;
}
/**
* @brief Waits that the card reaches an idle state.
*
* @param[in] mmcp pointer to the @p MMCDriver object
*
* @notapi
*/
static void sync(MMCDriver *mmcp) {
uint8_t buf[1];
spiSelect(mmcp->config->spip);
while (TRUE) {
spiReceive(mmcp->config->spip, 1, buf);
if (buf[0] == 0xFF)
break;
#ifdef MMC_NICE_WAITING
chThdSleep(1); /* Trying to be nice with the other threads.*/
#endif
}
spiUnselect(mmcp->config->spip);
}
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
/**
* @brief MMC over SPI driver initialization.
* @note This function is implicitly invoked by @p halInit(), there is
* no need to explicitly initialize the driver.
*
* @init
*/
void mmcInit(void) {
}
/**
* @brief Initializes an instance.
*
* @param[out] mmcp pointer to the @p MMCDriver object
*
* @init
*/
void mmcObjectInit(MMCDriver *mmcp) {
mmcp->vmt = &mmc_vmt;
mmcp->state = MMC_STOP;
mmcp->config = NULL;
mmcp->block_addresses = FALSE;
chEvtInit(&mmcp->inserted_event);
chEvtInit(&mmcp->removed_event);
}
/**
* @brief Configures and activates the MMC peripheral.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[in] config pointer to the @p MMCConfig object. Must be @p NULL.
*
* @api
*/
void mmcStart(MMCDriver *mmcp, const MMCConfig *config) {
chDbgCheck((mmcp != NULL) && (config == NULL), "mmcStart");
chSysLock();
chDbgAssert(mmcp->state == MMC_STOP, "mmcStart(), #1", "invalid state");
mmcp->config = config;
mmcp->state = MMC_WAIT;
mmcp->cnt = MMC_POLLING_INTERVAL;
chVTSetI(&mmcp->vt, MS2ST(MMC_POLLING_DELAY), tmrfunc, mmcp);
chSysUnlock();
}
/**
* @brief Disables the MMC peripheral.
*
* @param[in] mmcp pointer to the @p MMCDriver object
*
* @api
*/
void mmcStop(MMCDriver *mmcp) {
chDbgCheck(mmcp != NULL, "mmcStop");
chSysLock();
chDbgAssert((mmcp->state != MMC_UNINIT) &&
(mmcp->state != MMC_READING) &&
(mmcp->state != MMC_WRITING),
"mmcStop(), #1", "invalid state");
if (mmcp->state != MMC_STOP) {
mmcp->state = MMC_STOP;
chVTResetI(&mmcp->vt);
}
chSysUnlock();
spiStop(mmcp->config->spip);
}
/**
* @brief Performs the initialization procedure on the inserted card.
* @details This function should be invoked when a card is inserted and
* brings the driver in the @p MMC_READY state where it is possible
* to perform read and write operations.
* @note It is possible to invoke this function from the insertion event
* handler.
*
* @param[in] mmcp pointer to the @p MMCDriver object
*
* @return The operation status.
* @retval FALSE the operation succeeded and the driver is now
* in the @p MMC_READY state.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcConnect(MMCDriver *mmcp) {
unsigned i;
bool_t result;
chDbgCheck(mmcp != NULL, "mmcConnect");
chDbgAssert((mmcp->state != MMC_UNINIT) && (mmcp->state != MMC_STOP),
"mmcConnect(), #1", "invalid state");
if (mmcp->state == MMC_INSERTED) {
/* Slow clock mode and 128 clock pulses.*/
spiStart(mmcp->config->spip, mmcp->config->lscfg);
spiIgnore(mmcp->config->spip, 16);
/* SPI mode selection.*/
i = 0;
while (TRUE) {
if (send_command_R1(mmcp, MMCSD_CMD_GO_IDLE_STATE, 0) == 0x01)
break;
if (++i >= MMC_CMD0_RETRY)
return TRUE;
chThdSleepMilliseconds(10);
}
/* Try to detect if this is a high capacity card and switch to block
addresses if possible.
This method is based on "How to support SDC Ver2 and high capacity cards"
by ElmChan.*/
uint8_t r3[4];
if (send_command_R3(mmcp, MMCSD_CMD_SEND_IF_COND,
MMCSD_CMD8_PATTERN, r3) != 0x05) {
/* Switch to SDHC mode.*/
i = 0;
while (TRUE) {
if ((send_command_R1(mmcp, MMCSD_CMD_APP_CMD, 0) == 0x01) &&
(send_command_R3(mmcp, MMCSD_CMD_APP_OP_COND,
0x400001aa, r3) == 0x00))
break;
if (++i >= MMC_ACMD41_RETRY)
return TRUE;
chThdSleepMilliseconds(10);
}
/* Execute dedicated read on OCR register */
send_command_R3(mmcp, MMCSD_CMD_READ_OCR, 0, r3);
/* Check if CCS is set in response. Card operates in block mode if set.*/
if(r3[0] & 0x40)
mmcp->block_addresses = TRUE;
}
/* Initialization.*/
i = 0;
while (TRUE) {
uint8_t b = send_command_R1(mmcp, MMCSD_CMD_INIT, 0);
if (b == 0x00)
break;
if (b != 0x01)
return TRUE;
if (++i >= MMC_CMD1_RETRY)
return TRUE;
chThdSleepMilliseconds(10);
}
/* Initialization complete, full speed.*/
spiStart(mmcp->config->spip, mmcp->config->hscfg);
/* Setting block size.*/
if (send_command_R1(mmcp, MMCSD_CMD_SET_BLOCKLEN,
MMCSD_BLOCK_SIZE) != 0x00)
return TRUE;
/* Determine capacity.*/
if (read_CxD(mmcp, MMCSD_CMD_SEND_CSD, mmcp->csd))
return TRUE;
mmcp->capacity = mmcsdGetCapacity(mmcp->csd);
if (mmcp->capacity == 0)
return TRUE;
if (read_CxD(mmcp, MMCSD_CMD_SEND_CID, mmcp->cid))
return TRUE;
/* Transition to MMC_READY state (if not extracted).*/
chSysLock();
if (mmcp->state == MMC_INSERTED) {
mmcp->state = MMC_READY;
result = FALSE;
}
else
result = TRUE;
chSysUnlock();
return result;
}
if (mmcp->state == MMC_READY)
return FALSE;
/* Any other state is invalid.*/
return TRUE;
}
/**
* @brief Brings the driver in a state safe for card removal.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @return The operation status.
*
* @retval FALSE the operation succeeded and the driver is now
* in the @p MMC_INSERTED state.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcDisconnect(MMCDriver *mmcp) {
bool_t status;
chDbgCheck(mmcp != NULL, "mmcDisconnect");
chDbgAssert((mmcp->state != MMC_UNINIT) && (mmcp->state != MMC_STOP),
"mmcDisconnect(), #1", "invalid state");
switch (mmcp->state) {
case MMC_READY:
/* Wait for the pending write operations to complete.*/
sync(mmcp);
chSysLock();
if (mmcp->state == MMC_READY)
mmcp->state = MMC_INSERTED;
chSysUnlock();
case MMC_INSERTED:
status = FALSE;
default:
status = TRUE;
}
spiStop(mmcp->config->spip);
return status;
}
/**
* @brief Starts a sequential read.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[in] startblk first block to read
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcStartSequentialRead(MMCDriver *mmcp, uint32_t startblk) {
chDbgCheck(mmcp != NULL, "mmcStartSequentialRead");
chSysLock();
if (mmcp->state != MMC_READY) {
chSysUnlock();
return TRUE;
}
mmcp->state = MMC_READING;
chSysUnlock();
spiStart(mmcp->config->spip, mmcp->config->hscfg);
spiSelect(mmcp->config->spip);
if(mmcp->block_addresses)
send_hdr(mmcp, MMCSD_CMD_READ_MULTIPLE_BLOCK, startblk);
else
send_hdr(mmcp, MMCSD_CMD_READ_MULTIPLE_BLOCK, startblk * MMCSD_BLOCK_SIZE);
if (recvr1(mmcp) != 0x00) {
spiUnselect(mmcp->config->spip);
chSysLock();
if (mmcp->state == MMC_READING)
mmcp->state = MMC_READY;
chSysUnlock();
return TRUE;
}
return FALSE;
}
/**
* @brief Reads a block within a sequential read operation.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[out] buffer pointer to the read buffer
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcSequentialRead(MMCDriver *mmcp, uint8_t *buffer) {
int i;
chDbgCheck((mmcp != NULL) && (buffer != NULL), "mmcSequentialRead");
chSysLock();
if (mmcp->state != MMC_READING) {
chSysUnlock();
return TRUE;
}
chSysUnlock();
for (i = 0; i < MMC_WAIT_DATA; i++) {
spiReceive(mmcp->config->spip, 1, buffer);
if (buffer[0] == 0xFE) {
spiReceive(mmcp->config->spip, MMCSD_BLOCK_SIZE, buffer);
/* CRC ignored. */
spiIgnore(mmcp->config->spip, 2);
return FALSE;
}
}
/* Timeout.*/
spiUnselect(mmcp->config->spip);
chSysLock();
if (mmcp->state == MMC_READING)
mmcp->state = MMC_READY;
chSysUnlock();
return TRUE;
}
/**
* @brief Stops a sequential read gracefully.
*
* @param[in] mmcp pointer to the @p MMCDriver object
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcStopSequentialRead(MMCDriver *mmcp) {
static const uint8_t stopcmd[] = {0x40 | MMCSD_CMD_STOP_TRANSMISSION,
0, 0, 0, 0, 1, 0xFF};
bool_t result;
chDbgCheck(mmcp != NULL, "mmcStopSequentialRead");
chSysLock();
if (mmcp->state != MMC_READING) {
chSysUnlock();
return TRUE;
}
chSysUnlock();
spiSend(mmcp->config->spip, sizeof(stopcmd), stopcmd);
/* result = recvr1(mmcp) != 0x00;*/
/* Note, ignored r1 response, it can be not zero, unknown issue.*/
recvr1(mmcp);
result = FALSE;
spiUnselect(mmcp->config->spip);
chSysLock();
if (mmcp->state == MMC_READING)
mmcp->state = MMC_READY;
chSysUnlock();
return result;
}
/**
* @brief Starts a sequential write.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[in] startblk first block to write
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcStartSequentialWrite(MMCDriver *mmcp, uint32_t startblk) {
chDbgCheck(mmcp != NULL, "mmcStartSequentialWrite");
chSysLock();
if (mmcp->state != MMC_READY) {
chSysUnlock();
return TRUE;
}
mmcp->state = MMC_WRITING;
chSysUnlock();
spiStart(mmcp->config->spip, mmcp->config->hscfg);
spiSelect(mmcp->config->spip);
if(mmcp->block_addresses)
send_hdr(mmcp, MMCSD_CMD_WRITE_MULTIPLE_BLOCK, startblk);
else
send_hdr(mmcp, MMCSD_CMD_WRITE_MULTIPLE_BLOCK,
startblk * MMCSD_BLOCK_SIZE);
if (recvr1(mmcp) != 0x00) {
spiUnselect(mmcp->config->spip);
chSysLock();
if (mmcp->state == MMC_WRITING)
mmcp->state = MMC_READY;
chSysUnlock();
return TRUE;
}
return FALSE;
}
/**
* @brief Writes a block within a sequential write operation.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[out] buffer pointer to the write buffer
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcSequentialWrite(MMCDriver *mmcp, const uint8_t *buffer) {
static const uint8_t start[] = {0xFF, 0xFC};
uint8_t b[1];
chDbgCheck((mmcp != NULL) && (buffer != NULL), "mmcSequentialWrite");
chSysLock();
if (mmcp->state != MMC_WRITING) {
chSysUnlock();
return TRUE;
}
chSysUnlock();
spiSend(mmcp->config->spip, sizeof(start), start); /* Data prologue. */
spiSend(mmcp->config->spip, MMCSD_BLOCK_SIZE, buffer);/* Data. */
spiIgnore(mmcp->config->spip, 2); /* CRC ignored. */
spiReceive(mmcp->config->spip, 1, b);
if ((b[0] & 0x1F) == 0x05) {
wait(mmcp);
return FALSE;
}
/* Error.*/
spiUnselect(mmcp->config->spip);
chSysLock();
if (mmcp->state == MMC_WRITING)
mmcp->state = MMC_READY;
chSysUnlock();
return TRUE;
}
/**
* @brief Stops a sequential write gracefully.
*
* @param[in] mmcp pointer to the @p MMCDriver object
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcStopSequentialWrite(MMCDriver *mmcp) {
static const uint8_t stop[] = {0xFD, 0xFF};
chDbgCheck(mmcp != NULL, "mmcStopSequentialWrite");
chSysLock();
if (mmcp->state != MMC_WRITING) {
chSysUnlock();
return TRUE;
}
chSysUnlock();
spiSend(mmcp->config->spip, sizeof(stop), stop);
spiUnselect(mmcp->config->spip);
chSysLock();
if (mmcp->state == MMC_WRITING) {
mmcp->state = MMC_READY;
chSysUnlock();
return FALSE;
}
chSysUnlock();
return TRUE;
}
/**
* @brief Waits for card idle condition.
*
* @param[in] mmcp pointer to the @p MMCDriver object
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcSync(MMCDriver *mmcp) {
chDbgCheck(mmcp != NULL, "mmcSync");
chSysLock();
if (mmcp->state != MMC_READY) {
chSysUnlock();
return TRUE;
}
chSysUnlock();
sync(mmcp);
return FALSE;
}
/**
* @brief Returns the media info.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[out] bdip pointer to a @p BlockDeviceInfo structure
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcGetInfo(MMCDriver *mmcp, BlockDeviceInfo *bdip) {
chDbgCheck((mmcp != NULL) && (bdip != NULL), "mmcGetInfo");
chSysLock();
if (mmcp->state != MMC_READY) {
chSysUnlock();
return TRUE;
}
chSysUnlock();
bdip->blk_num = mmcp->capacity;
bdip->blk_size = MMCSD_BLOCK_SIZE;
return FALSE;
}
/**
* @brief Erases blocks.
*
* @param[in] mmcp pointer to the @p MMCDriver object
* @param[in] startblk starting block number
* @param[in] endblk ending block number
*
* @return The operation status.
* @retval FALSE the operation succeeded.
* @retval TRUE the operation failed.
*
* @api
*/
bool_t mmcErase(MMCDriver *mmcp, uint32_t startblk, uint32_t endblk) {
chDbgCheck((mmcp != NULL), "mmcErase");
if (send_command_R1(mmcp, MMCSD_CMD_ERASE_RW_BLK_START, startblk))
return TRUE;
if (send_command_R1(mmcp, MMCSD_CMD_ERASE_RW_BLK_END, endblk))
return TRUE;
if (send_command_R1(mmcp, MMCSD_CMD_ERASE, 0))
return TRUE;
return FALSE;
}
#endif /* HAL_USE_MMC_SPI */
/** @} */