/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Parts of this file have been contributed by Matthias Blaicher. */ /** * @file mmc_spi.c * @brief MMC over SPI driver code. * * @addtogroup MMC_SPI * @{ */ #include #include "ch.h" #include "hal.h" #if HAL_USE_MMC_SPI || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /* Forward declarations required by mmc_vmt.*/ bool_t mmc_read(void *instance, uint32_t startblk, uint8_t *buffer, uint32_t n); bool_t mmc_write(void *instance, uint32_t startblk, const uint8_t *buffer, uint32_t n); /** * @brief Virtual methods table. */ static const struct MMCDriverVMT mmc_vmt = { (bool_t (*)(void *))mmc_lld_is_card_inserted, (bool_t (*)(void *))mmc_lld_is_write_protected, (bool_t (*)(void *))mmcConnect, (bool_t (*)(void *))mmcDisconnect, mmc_read, mmc_write, (bool_t (*)(void *))mmcSync, (bool_t (*)(void *, BlockDeviceInfo *))mmcGetInfo }; /** * @brief Lookup table for CRC-7 ( based on polynomial x^7 + x^3 + 1). */ static const uint8_t crc7_lookup_table[256] = { 0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77, 0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26, 0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e, 0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d, 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45, 0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14, 0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c, 0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b, 0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13, 0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42, 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a, 0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69, 0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21, 0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70, 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38, 0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e, 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36, 0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67, 0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55, 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d, 0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a, 0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52, 0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03, 0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b, 0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28, 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60, 0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31, 0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79 }; /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ bool_t mmc_read(void *instance, uint32_t startblk, uint8_t *buffer, uint32_t n) { if (mmcStartSequentialRead((MMCDriver *)instance, startblk)) return TRUE; while (n > 0) { if (mmcSequentialRead((MMCDriver *)instance, buffer)) return TRUE; buffer += MMCSD_BLOCK_SIZE; n--; } if (mmcStopSequentialRead((MMCDriver *)instance)) return TRUE; return FALSE; } bool_t mmc_write(void *instance, uint32_t startblk, const uint8_t *buffer, uint32_t n) { if (mmcStartSequentialWrite((MMCDriver *)instance, startblk)) return TRUE; while (n > 0) { if (mmcSequentialWrite((MMCDriver *)instance, buffer)) return TRUE; buffer += MMCSD_BLOCK_SIZE; n--; } if (mmcStopSequentialWrite((MMCDriver *)instance)) return TRUE; return FALSE; } /** * @brief Calculate the MMC standard CRC-7 based on a lookup table. * * @param[in] crc start value for CRC * @param[in] buffer pointer to data buffer * @param[in] len length of data * @return Calculated CRC */ static uint8_t crc7(uint8_t crc, const uint8_t *buffer, size_t len) { while (len--) crc = crc7_lookup_table[(crc << 1) ^ (*buffer++)]; return crc; } /** * @brief Insertion monitor timer callback function. * * @param[in] p pointer to the @p MMCDriver object * * @notapi */ static void tmrfunc(void *p) { MMCDriver *mmcp = p; chSysLockFromIsr(); if (mmcp->cnt > 0) { if (mmc_lld_is_card_inserted(mmcp)) { if (--mmcp->cnt == 0) { mmcp->state = MMC_INSERTED; chEvtBroadcastI(&mmcp->inserted_event); } } else mmcp->cnt = MMC_POLLING_INTERVAL; } else { if (!mmc_lld_is_card_inserted(mmcp)) { mmcp->state = MMC_WAIT; mmcp->cnt = MMC_POLLING_INTERVAL; chEvtBroadcastI(&mmcp->removed_event); } } chVTSetI(&mmcp->vt, MS2ST(MMC_POLLING_DELAY), tmrfunc, mmcp); chSysUnlockFromIsr(); } /** * @brief Waits an idle condition. * * @param[in] mmcp pointer to the @p MMCDriver object * * @notapi */ static void wait(MMCDriver *mmcp) { int i; uint8_t buf[4]; for (i = 0; i < 16; i++) { spiReceive(mmcp->config->spip, 1, buf); if (buf[0] == 0xFF) return; } /* Looks like it is a long wait.*/ while (TRUE) { spiReceive(mmcp->config->spip, 1, buf); if (buf[0] == 0xFF) break; #ifdef MMC_NICE_WAITING /* Trying to be nice with the other threads.*/ chThdSleep(1); #endif } } /** * @brief Sends a command header. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[in] cmd the command id * @param[in] arg the command argument * * @notapi */ static void send_hdr(MMCDriver *mmcp, uint8_t cmd, uint32_t arg) { uint8_t buf[6]; /* Wait for the bus to become idle if a write operation was in progress.*/ wait(mmcp); buf[0] = 0x40 | cmd; buf[1] = arg >> 24; buf[2] = arg >> 16; buf[3] = arg >> 8; buf[4] = arg; /* Calculate CRC for command header, shift to right position, add stop bit.*/ buf[5] = ((crc7(0, buf, 5) & 0x7F) << 1) | 0x01; spiSend(mmcp->config->spip, 6, buf); } /** * @brief Receives a single byte response. * * @param[in] mmcp pointer to the @p MMCDriver object * @return The response as an @p uint8_t value. * @retval 0xFF timed out. * * @notapi */ static uint8_t recvr1(MMCDriver *mmcp) { int i; uint8_t r1[1]; for (i = 0; i < 9; i++) { spiReceive(mmcp->config->spip, 1, r1); if (r1[0] != 0xFF) return r1[0]; } return 0xFF; } /** * @brief Receives a three byte response. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[out] buffer pointer to four bytes wide buffer * @return First response byte as an @p uint8_t value. * @retval 0xFF timed out. * * @notapi */ static uint8_t recvr3(MMCDriver *mmcp, uint8_t* buffer) { uint8_t r1; r1 = recvr1(mmcp); spiReceive(mmcp->config->spip, 4, buffer); return r1; } /** * @brief Sends a command an returns a single byte response. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[in] cmd the command id * @param[in] arg the command argument * @return The response as an @p uint8_t value. * @retval 0xFF timed out. * * @notapi */ static uint8_t send_command_R1(MMCDriver *mmcp, uint8_t cmd, uint32_t arg) { uint8_t r1; spiSelect(mmcp->config->spip); send_hdr(mmcp, cmd, arg); r1 = recvr1(mmcp); spiUnselect(mmcp->config->spip); return r1; } /** * @brief Sends a command which returns a five bytes response (R3). * * @param[in] mmcp pointer to the @p MMCDriver object * @param[in] cmd the command id * @param[in] arg the command argument * @param[out] response pointer to four bytes wide uint8_t buffer * @return The first byte of the response (R1) as an @p * uint8_t value. * @retval 0xFF timed out. * * @notapi */ static uint8_t send_command_R3(MMCDriver *mmcp, uint8_t cmd, uint32_t arg, uint8_t *response) { uint8_t r1; spiSelect(mmcp->config->spip); send_hdr(mmcp, cmd, arg); r1 = recvr3(mmcp, response); spiUnselect(mmcp->config->spip); return r1; } /** * @brief Reads the CSD. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[out] csd pointer to the CSD buffer * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @notapi */ static bool_t read_CxD(MMCDriver *mmcp, uint8_t cmd, uint32_t cxd[4]) { unsigned i; uint8_t *bp, buf[16]; spiSelect(mmcp->config->spip); send_hdr(mmcp, cmd, 0); if (recvr1(mmcp) != 0x00) { spiUnselect(mmcp->config->spip); return TRUE; } /* Wait for data availability.*/ for (i = 0; i < MMC_WAIT_DATA; i++) { spiReceive(mmcp->config->spip, 1, buf); if (buf[0] == 0xFE) { uint32_t *wp; spiReceive(mmcp->config->spip, 16, buf); bp = buf; for (wp = &cxd[3]; wp >= cxd; wp--) { *wp = ((uint32_t)bp[0] << 24) | ((uint32_t)bp[1] << 16) | ((uint32_t)bp[2] << 8) | (uint32_t)bp[3]; bp += 4; } /* CRC ignored then end of transaction. */ spiIgnore(mmcp->config->spip, 2); spiUnselect(mmcp->config->spip); return FALSE; } } return TRUE; } /** * @brief Waits that the card reaches an idle state. * * @param[in] mmcp pointer to the @p MMCDriver object * * @notapi */ static void sync(MMCDriver *mmcp) { uint8_t buf[1]; spiSelect(mmcp->config->spip); while (TRUE) { spiReceive(mmcp->config->spip, 1, buf); if (buf[0] == 0xFF) break; #ifdef MMC_NICE_WAITING chThdSleep(1); /* Trying to be nice with the other threads.*/ #endif } spiUnselect(mmcp->config->spip); } /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief MMC over SPI driver initialization. * @note This function is implicitly invoked by @p halInit(), there is * no need to explicitly initialize the driver. * * @init */ void mmcInit(void) { } /** * @brief Initializes an instance. * * @param[out] mmcp pointer to the @p MMCDriver object * * @init */ void mmcObjectInit(MMCDriver *mmcp) { mmcp->vmt = &mmc_vmt; mmcp->state = MMC_STOP; mmcp->config = NULL; mmcp->block_addresses = FALSE; chEvtInit(&mmcp->inserted_event); chEvtInit(&mmcp->removed_event); } /** * @brief Configures and activates the MMC peripheral. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[in] config pointer to the @p MMCConfig object. Must be @p NULL. * * @api */ void mmcStart(MMCDriver *mmcp, const MMCConfig *config) { chDbgCheck((mmcp != NULL) && (config == NULL), "mmcStart"); chSysLock(); chDbgAssert(mmcp->state == MMC_STOP, "mmcStart(), #1", "invalid state"); mmcp->config = config; mmcp->state = MMC_WAIT; mmcp->cnt = MMC_POLLING_INTERVAL; chVTSetI(&mmcp->vt, MS2ST(MMC_POLLING_DELAY), tmrfunc, mmcp); chSysUnlock(); } /** * @brief Disables the MMC peripheral. * * @param[in] mmcp pointer to the @p MMCDriver object * * @api */ void mmcStop(MMCDriver *mmcp) { chDbgCheck(mmcp != NULL, "mmcStop"); chSysLock(); chDbgAssert((mmcp->state != MMC_UNINIT) && (mmcp->state != MMC_READING) && (mmcp->state != MMC_WRITING), "mmcStop(), #1", "invalid state"); if (mmcp->state != MMC_STOP) { mmcp->state = MMC_STOP; chVTResetI(&mmcp->vt); } chSysUnlock(); spiStop(mmcp->config->spip); } /** * @brief Performs the initialization procedure on the inserted card. * @details This function should be invoked when a card is inserted and * brings the driver in the @p MMC_READY state where it is possible * to perform read and write operations. * @note It is possible to invoke this function from the insertion event * handler. * * @param[in] mmcp pointer to the @p MMCDriver object * * @return The operation status. * @retval FALSE the operation succeeded and the driver is now * in the @p MMC_READY state. * @retval TRUE the operation failed. * * @api */ bool_t mmcConnect(MMCDriver *mmcp) { unsigned i; bool_t result; chDbgCheck(mmcp != NULL, "mmcConnect"); chDbgAssert((mmcp->state != MMC_UNINIT) && (mmcp->state != MMC_STOP), "mmcConnect(), #1", "invalid state"); if (mmcp->state == MMC_INSERTED) { /* Slow clock mode and 128 clock pulses.*/ spiStart(mmcp->config->spip, mmcp->config->lscfg); spiIgnore(mmcp->config->spip, 16); /* SPI mode selection.*/ i = 0; while (TRUE) { if (send_command_R1(mmcp, MMCSD_CMD_GO_IDLE_STATE, 0) == 0x01) break; if (++i >= MMC_CMD0_RETRY) return TRUE; chThdSleepMilliseconds(10); } /* Try to detect if this is a high capacity card and switch to block addresses if possible. This method is based on "How to support SDC Ver2 and high capacity cards" by ElmChan.*/ uint8_t r3[4]; if (send_command_R3(mmcp, MMCSD_CMD_SEND_IF_COND, MMCSD_CMD8_PATTERN, r3) != 0x05) { /* Switch to SDHC mode.*/ i = 0; while (TRUE) { if ((send_command_R1(mmcp, MMCSD_CMD_APP_CMD, 0) == 0x01) && (send_command_R3(mmcp, MMCSD_CMD_APP_OP_COND, 0x400001aa, r3) == 0x00)) break; if (++i >= MMC_ACMD41_RETRY) return TRUE; chThdSleepMilliseconds(10); } /* Execute dedicated read on OCR register */ send_command_R3(mmcp, MMCSD_CMD_READ_OCR, 0, r3); /* Check if CCS is set in response. Card operates in block mode if set.*/ if(r3[0] & 0x40) mmcp->block_addresses = TRUE; } /* Initialization.*/ i = 0; while (TRUE) { uint8_t b = send_command_R1(mmcp, MMCSD_CMD_INIT, 0); if (b == 0x00) break; if (b != 0x01) return TRUE; if (++i >= MMC_CMD1_RETRY) return TRUE; chThdSleepMilliseconds(10); } /* Initialization complete, full speed.*/ spiStart(mmcp->config->spip, mmcp->config->hscfg); /* Setting block size.*/ if (send_command_R1(mmcp, MMCSD_CMD_SET_BLOCKLEN, MMCSD_BLOCK_SIZE) != 0x00) return TRUE; /* Determine capacity.*/ if (read_CxD(mmcp, MMCSD_CMD_SEND_CSD, mmcp->csd)) return TRUE; mmcp->capacity = mmcsdGetCapacity(mmcp->csd); if (mmcp->capacity == 0) return TRUE; if (read_CxD(mmcp, MMCSD_CMD_SEND_CID, mmcp->cid)) return TRUE; /* Transition to MMC_READY state (if not extracted).*/ chSysLock(); if (mmcp->state == MMC_INSERTED) { mmcp->state = MMC_READY; result = FALSE; } else result = TRUE; chSysUnlock(); return result; } if (mmcp->state == MMC_READY) return FALSE; /* Any other state is invalid.*/ return TRUE; } /** * @brief Brings the driver in a state safe for card removal. * * @param[in] mmcp pointer to the @p MMCDriver object * @return The operation status. * * @retval FALSE the operation succeeded and the driver is now * in the @p MMC_INSERTED state. * @retval TRUE the operation failed. * * @api */ bool_t mmcDisconnect(MMCDriver *mmcp) { bool_t status; chDbgCheck(mmcp != NULL, "mmcDisconnect"); chDbgAssert((mmcp->state != MMC_UNINIT) && (mmcp->state != MMC_STOP), "mmcDisconnect(), #1", "invalid state"); switch (mmcp->state) { case MMC_READY: /* Wait for the pending write operations to complete.*/ sync(mmcp); chSysLock(); if (mmcp->state == MMC_READY) mmcp->state = MMC_INSERTED; chSysUnlock(); case MMC_INSERTED: status = FALSE; default: status = TRUE; } spiStop(mmcp->config->spip); return status; } /** * @brief Starts a sequential read. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[in] startblk first block to read * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcStartSequentialRead(MMCDriver *mmcp, uint32_t startblk) { chDbgCheck(mmcp != NULL, "mmcStartSequentialRead"); chSysLock(); if (mmcp->state != MMC_READY) { chSysUnlock(); return TRUE; } mmcp->state = MMC_READING; chSysUnlock(); spiStart(mmcp->config->spip, mmcp->config->hscfg); spiSelect(mmcp->config->spip); if(mmcp->block_addresses) send_hdr(mmcp, MMCSD_CMD_READ_MULTIPLE_BLOCK, startblk); else send_hdr(mmcp, MMCSD_CMD_READ_MULTIPLE_BLOCK, startblk * MMCSD_BLOCK_SIZE); if (recvr1(mmcp) != 0x00) { spiUnselect(mmcp->config->spip); chSysLock(); if (mmcp->state == MMC_READING) mmcp->state = MMC_READY; chSysUnlock(); return TRUE; } return FALSE; } /** * @brief Reads a block within a sequential read operation. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[out] buffer pointer to the read buffer * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcSequentialRead(MMCDriver *mmcp, uint8_t *buffer) { int i; chDbgCheck((mmcp != NULL) && (buffer != NULL), "mmcSequentialRead"); chSysLock(); if (mmcp->state != MMC_READING) { chSysUnlock(); return TRUE; } chSysUnlock(); for (i = 0; i < MMC_WAIT_DATA; i++) { spiReceive(mmcp->config->spip, 1, buffer); if (buffer[0] == 0xFE) { spiReceive(mmcp->config->spip, MMCSD_BLOCK_SIZE, buffer); /* CRC ignored. */ spiIgnore(mmcp->config->spip, 2); return FALSE; } } /* Timeout.*/ spiUnselect(mmcp->config->spip); chSysLock(); if (mmcp->state == MMC_READING) mmcp->state = MMC_READY; chSysUnlock(); return TRUE; } /** * @brief Stops a sequential read gracefully. * * @param[in] mmcp pointer to the @p MMCDriver object * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcStopSequentialRead(MMCDriver *mmcp) { static const uint8_t stopcmd[] = {0x40 | MMCSD_CMD_STOP_TRANSMISSION, 0, 0, 0, 0, 1, 0xFF}; bool_t result; chDbgCheck(mmcp != NULL, "mmcStopSequentialRead"); chSysLock(); if (mmcp->state != MMC_READING) { chSysUnlock(); return TRUE; } chSysUnlock(); spiSend(mmcp->config->spip, sizeof(stopcmd), stopcmd); /* result = recvr1(mmcp) != 0x00;*/ /* Note, ignored r1 response, it can be not zero, unknown issue.*/ recvr1(mmcp); result = FALSE; spiUnselect(mmcp->config->spip); chSysLock(); if (mmcp->state == MMC_READING) mmcp->state = MMC_READY; chSysUnlock(); return result; } /** * @brief Starts a sequential write. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[in] startblk first block to write * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcStartSequentialWrite(MMCDriver *mmcp, uint32_t startblk) { chDbgCheck(mmcp != NULL, "mmcStartSequentialWrite"); chSysLock(); if (mmcp->state != MMC_READY) { chSysUnlock(); return TRUE; } mmcp->state = MMC_WRITING; chSysUnlock(); spiStart(mmcp->config->spip, mmcp->config->hscfg); spiSelect(mmcp->config->spip); if(mmcp->block_addresses) send_hdr(mmcp, MMCSD_CMD_WRITE_MULTIPLE_BLOCK, startblk); else send_hdr(mmcp, MMCSD_CMD_WRITE_MULTIPLE_BLOCK, startblk * MMCSD_BLOCK_SIZE); if (recvr1(mmcp) != 0x00) { spiUnselect(mmcp->config->spip); chSysLock(); if (mmcp->state == MMC_WRITING) mmcp->state = MMC_READY; chSysUnlock(); return TRUE; } return FALSE; } /** * @brief Writes a block within a sequential write operation. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[out] buffer pointer to the write buffer * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcSequentialWrite(MMCDriver *mmcp, const uint8_t *buffer) { static const uint8_t start[] = {0xFF, 0xFC}; uint8_t b[1]; chDbgCheck((mmcp != NULL) && (buffer != NULL), "mmcSequentialWrite"); chSysLock(); if (mmcp->state != MMC_WRITING) { chSysUnlock(); return TRUE; } chSysUnlock(); spiSend(mmcp->config->spip, sizeof(start), start); /* Data prologue. */ spiSend(mmcp->config->spip, MMCSD_BLOCK_SIZE, buffer);/* Data. */ spiIgnore(mmcp->config->spip, 2); /* CRC ignored. */ spiReceive(mmcp->config->spip, 1, b); if ((b[0] & 0x1F) == 0x05) { wait(mmcp); return FALSE; } /* Error.*/ spiUnselect(mmcp->config->spip); chSysLock(); if (mmcp->state == MMC_WRITING) mmcp->state = MMC_READY; chSysUnlock(); return TRUE; } /** * @brief Stops a sequential write gracefully. * * @param[in] mmcp pointer to the @p MMCDriver object * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcStopSequentialWrite(MMCDriver *mmcp) { static const uint8_t stop[] = {0xFD, 0xFF}; chDbgCheck(mmcp != NULL, "mmcStopSequentialWrite"); chSysLock(); if (mmcp->state != MMC_WRITING) { chSysUnlock(); return TRUE; } chSysUnlock(); spiSend(mmcp->config->spip, sizeof(stop), stop); spiUnselect(mmcp->config->spip); chSysLock(); if (mmcp->state == MMC_WRITING) { mmcp->state = MMC_READY; chSysUnlock(); return FALSE; } chSysUnlock(); return TRUE; } /** * @brief Waits for card idle condition. * * @param[in] mmcp pointer to the @p MMCDriver object * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcSync(MMCDriver *mmcp) { chDbgCheck(mmcp != NULL, "mmcSync"); chSysLock(); if (mmcp->state != MMC_READY) { chSysUnlock(); return TRUE; } chSysUnlock(); sync(mmcp); return FALSE; } /** * @brief Returns the media info. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[out] bdip pointer to a @p BlockDeviceInfo structure * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcGetInfo(MMCDriver *mmcp, BlockDeviceInfo *bdip) { chDbgCheck((mmcp != NULL) && (bdip != NULL), "mmcGetInfo"); chSysLock(); if (mmcp->state != MMC_READY) { chSysUnlock(); return TRUE; } chSysUnlock(); bdip->blk_num = mmcp->capacity; bdip->blk_size = MMCSD_BLOCK_SIZE; return FALSE; } /** * @brief Erases blocks. * * @param[in] mmcp pointer to the @p MMCDriver object * @param[in] startblk starting block number * @param[in] endblk ending block number * * @return The operation status. * @retval FALSE the operation succeeded. * @retval TRUE the operation failed. * * @api */ bool_t mmcErase(MMCDriver *mmcp, uint32_t startblk, uint32_t endblk) { chDbgCheck((mmcp != NULL), "mmcErase"); if (send_command_R1(mmcp, MMCSD_CMD_ERASE_RW_BLK_START, startblk)) return TRUE; if (send_command_R1(mmcp, MMCSD_CMD_ERASE_RW_BLK_END, endblk)) return TRUE; if (send_command_R1(mmcp, MMCSD_CMD_ERASE, 0)) return TRUE; return FALSE; } #endif /* HAL_USE_MMC_SPI */ /** @} */