/* ChibiOS - Copyright (C) 2006..2015 Giovanni Di Sirio Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * @file STM32F3xx/adc_lld.c * @brief STM32F3xx ADC subsystem low level driver source. * * @addtogroup ADC * @{ */ #include "hal.h" #if HAL_USE_ADC || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ #if STM32_ADC_DUAL_MODE #if STM32_ADC_COMPACT_SAMPLES /* Compact type dual mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD) #define ADC_DMA_MDMA ADC_CCR_MDMA_HWORD #else /* !STM32_ADC_COMPACT_SAMPLES */ /* Large type dual mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_PSIZE_WORD) #define ADC_DMA_MDMA ADC_CCR_MDMA_WORD #endif /* !STM32_ADC_COMPACT_SAMPLES */ #else /* !STM32_ADC_DUAL_MODE */ #if STM32_ADC_COMPACT_SAMPLES /* Compact type single mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_PSIZE_BYTE) #define ADC_DMA_MDMA ADC_CCR_MDMA_DISABLED #else /* !STM32_ADC_COMPACT_SAMPLES */ /* Large type single mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD) #define ADC_DMA_MDMA ADC_CCR_MDMA_DISABLED #endif /* !STM32_ADC_COMPACT_SAMPLES */ #endif /* !STM32_ADC_DUAL_MODE */ /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief ADC1 driver identifier.*/ #if STM32_ADC_USE_ADC1 || defined(__DOXYGEN__) ADCDriver ADCD1; #endif /** @brief ADC1 driver identifier.*/ #if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__) ADCDriver ADCD3; #endif /*===========================================================================*/ /* Driver local variables and types. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Enables the ADC voltage regulator. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_vreg_on(ADCDriver *adcp) { adcp->adcm->CR = 0; /* RM 12.4.3.*/ adcp->adcm->CR = ADC_CR_ADVREGEN_0; #if STM32_ADC_DUAL_MODE adcp->adcs->CR = ADC_CR_ADVREGEN_0; #endif osalSysPolledDelayX(US2RTC(STM32_HCLK, 10)); } /** * @brief Disables the ADC voltage regulator. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_vreg_off(ADCDriver *adcp) { adcp->adcm->CR = 0; /* RM 12.4.3.*/ adcp->adcm->CR = ADC_CR_ADVREGEN_1; #if STM32_ADC_DUAL_MODE adcp->adcs->CR = ADC_CR_ADVREGEN_1; #endif } /** * @brief Enables the ADC analog circuit. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_analog_on(ADCDriver *adcp) { adcp->adcm->CR |= ADC_CR_ADEN; while ((adcp->adcm->ISR & ADC_ISR_ADRD) == 0) ; #if STM32_ADC_DUAL_MODE adcp->adcs->CR |= ADC_CR_ADEN; while ((adcp->adcs->ISR & ADC_ISR_ADRD) == 0) ; #endif } /** * @brief Disables the ADC analog circuit. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_analog_off(ADCDriver *adcp) { adcp->adcm->CR |= ADC_CR_ADDIS; while ((adcp->adcm->CR & ADC_CR_ADDIS) != 0) ; #if STM32_ADC_DUAL_MODE adcp->adcs->CR |= ADC_CR_ADDIS; while ((adcp->adcs->CR & ADC_CR_ADDIS) != 0) ; #endif } /** * @brief Calibrates and ADC unit. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_calibrate(ADCDriver *adcp) { osalDbgAssert(adcp->adcm->CR == ADC_CR_ADVREGEN_0, "invalid register state"); adcp->adcm->CR |= ADC_CR_ADCAL; while ((adcp->adcm->CR & ADC_CR_ADCAL) != 0) ; #if STM32_ADC_DUAL_MODE osalDbgAssert(adcp->adcs->CR == ADC_CR_ADVREGEN_0, "invalid register state"); adcp->adcs->CR |= ADC_CR_ADCAL; while ((adcp->adcs->CR & ADC_CR_ADCAL) != 0) ; #endif } /** * @brief Stops an ongoing conversion, if any. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_stop_adc(ADCDriver *adcp) { if (adcp->adcm->CR & ADC_CR_ADSTART) { adcp->adcm->CR |= ADC_CR_ADSTP; while (adcp->adcm->CR & ADC_CR_ADSTP) ; } } /** * @brief ADC DMA ISR service routine. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] flags pre-shifted content of the ISR register */ static void adc_lld_serve_dma_interrupt(ADCDriver *adcp, uint32_t flags) { /* DMA errors handling.*/ if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) { /* DMA, this could help only if the DMA tries to access an unmapped address space or violates alignment rules.*/ _adc_isr_error_code(adcp, ADC_ERR_DMAFAILURE); } else { /* It is possible that the conversion group has already be reset by the ADC error handler, in this case this interrupt is spurious.*/ if (adcp->grpp != NULL) { if ((flags & STM32_DMA_ISR_TCIF) != 0) { /* Transfer complete processing.*/ _adc_isr_full_code(adcp); } else if ((flags & STM32_DMA_ISR_HTIF) != 0) { /* Half transfer processing.*/ _adc_isr_half_code(adcp); } } } } /** * @brief ADC ISR service routine. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] isr content of the ISR register */ static void adc_lld_serve_interrupt(ADCDriver *adcp, uint32_t isr) { /* It could be a spurious interrupt caused by overflows after DMA disabling, just ignore it in this case.*/ if (adcp->grpp != NULL) { /* Note, an overflow may occur after the conversion ended before the driver is able to stop the ADC, this is why the DMA channel is checked too.*/ if ((isr & ADC_ISR_OVR) && (dmaStreamGetTransactionSize(adcp->dmastp) > 0)) { /* ADC overflow condition, this could happen only if the DMA is unable to read data fast enough.*/ _adc_isr_error_code(adcp, ADC_ERR_OVERFLOW); } if (isr & ADC_ISR_AWD1) { /* Analog watchdog error.*/ _adc_isr_error_code(adcp, ADC_ERR_AWD1); } if (isr & ADC_ISR_AWD2) { /* Analog watchdog error.*/ _adc_isr_error_code(adcp, ADC_ERR_AWD2); } if (isr & ADC_ISR_AWD3) { /* Analog watchdog error.*/ _adc_isr_error_code(adcp, ADC_ERR_AWD3); } } } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if STM32_ADC_USE_ADC1 || defined(__DOXYGEN__) /** * @brief ADC1/ADC2 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(Vector88) { uint32_t isr; OSAL_IRQ_PROLOGUE(); #if STM32_ADC_DUAL_MODE isr = ADC1->ISR; isr |= ADC2->ISR; ADC1->ISR = isr; ADC2->ISR = isr; #else /* !STM32_ADC_DUAL_MODE */ isr = ADC1->ISR; ADC1->ISR = isr; #endif /* !STM32_ADC_DUAL_MODE */ adc_lld_serve_interrupt(&ADCD1, isr); OSAL_IRQ_EPILOGUE(); } #endif /* STM32_ADC_USE_ADC1 */ #if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__) /** * @brief ADC3 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(VectorFC) { uint32_t isr; OSAL_IRQ_PROLOGUE(); isr = ADC3->ISR; ADC3->ISR = isr; adc_lld_serve_interrupt(&ADCD3, isr); OSAL_IRQ_EPILOGUE(); } #if STM32_ADC_DUAL_MODE /** * @brief ADC4 interrupt handler (as ADC3 slave). * * @isr */ OSAL_IRQ_HANDLER(Vector134) { uint32_t isr; OSAL_IRQ_PROLOGUE(); isr = ADC4->ISR; ADC4->ISR = isr; adc_lld_serve_interrupt(&ADCD3, isr); OSAL_IRQ_EPILOGUE(); } #endif /* STM32_ADC_DUAL_MODE */ #endif /* STM32_ADC_USE_ADC3 */ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level ADC driver initialization. * * @notapi */ void adc_lld_init(void) { #if STM32_ADC_USE_ADC1 /* Driver initialization.*/ adcObjectInit(&ADCD1); ADCD1.adcc = ADC1_2_COMMON; ADCD1.adcm = ADC1; #if STM32_ADC_DUAL_MODE ADCD1.adcs = ADC2; #endif ADCD1.dmastp = STM32_DMA1_STREAM1; ADCD1.dmamode = ADC_DMA_SIZE | STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; nvicEnableVector(ADC1_2_IRQn, STM32_ADC_ADC12_IRQ_PRIORITY); #endif /* STM32_ADC_USE_ADC1 */ #if STM32_ADC_USE_ADC3 /* Driver initialization.*/ adcObjectInit(&ADCD3); ADCD3.adcc = ADC3_4_COMMON; ADCD3.adcm = ADC3; #if STM32_ADC_DUAL_MODE ADCD3.adcs = ADC4; #endif ADCD3.dmastp = STM32_DMA2_STREAM5; ADCD3.dmamode = ADC_DMA_SIZE | STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; nvicEnableVector(ADC3_IRQn, STM32_ADC_ADC34_IRQ_PRIORITY); #if STM32_ADC_DUAL_MODE nvicEnableVector(ADC4_IRQn, STM32_ADC_ADC34_IRQ_PRIORITY); #endif #endif /* STM32_ADC_USE_ADC3 */ } /** * @brief Configures and activates the ADC peripheral. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_start(ADCDriver *adcp) { /* If in stopped state then enables the ADC and DMA clocks.*/ if (adcp->state == ADC_STOP) { #if STM32_ADC_USE_ADC1 if (&ADCD1 == adcp) { bool b; b = dmaStreamAllocate(adcp->dmastp, STM32_ADC_ADC12_DMA_IRQ_PRIORITY, (stm32_dmaisr_t)adc_lld_serve_dma_interrupt, (void *)adcp); osalDbgAssert(!b, "stream already allocated"); rccEnableADC12(FALSE); } #endif /* STM32_ADC_USE_ADC1 */ #if STM32_ADC_USE_ADC3 if (&ADCD3 == adcp) { bool b; b = dmaStreamAllocate(adcp->dmastp, STM32_ADC_ADC34_DMA_IRQ_PRIORITY, (stm32_dmaisr_t)adc_lld_serve_dma_interrupt, (void *)adcp); osalDbgAssert(!b, "stream already allocated"); rccEnableADC34(FALSE); } #endif /* STM32_ADC_USE_ADC2 */ /* Setting DMA peripheral-side pointer.*/ #if STM32_ADC_DUAL_MODE dmaStreamSetPeripheral(adcp->dmastp, &adcp->adcc->CDR); #else dmaStreamSetPeripheral(adcp->dmastp, &adcp->adcm->DR); #endif /* Clock source setting.*/ adcp->adcc->CCR = STM32_ADC_ADC12_CLOCK_MODE | ADC_DMA_MDMA; /* Master ADC calibration.*/ adc_lld_vreg_on(adcp); adc_lld_calibrate(adcp); /* Master ADC enabled here in order to reduce conversions latencies.*/ adc_lld_analog_on(adcp); } } /** * @brief Deactivates the ADC peripheral. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_stop(ADCDriver *adcp) { /* If in ready state then disables the ADC clock and analog part.*/ if (adcp->state == ADC_READY) { /* Releasing the associated DMA channel.*/ dmaStreamRelease(adcp->dmastp); /* Stopping the ongoing conversion, if any.*/ adc_lld_stop_adc(adcp); /* Disabling ADC analog circuit and regulator.*/ adc_lld_analog_off(adcp); adc_lld_vreg_off(adcp); #if STM32_ADC_USE_ADC1 if (&ADCD1 == adcp) rccDisableADC12(FALSE); #endif #if STM32_ADC_USE_ADC3 if (&ADCD3 == adcp) rccDisableADC34(FALSE); #endif } } /** * @brief Starts an ADC conversion. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_start_conversion(ADCDriver *adcp) { uint32_t dmamode, ccr, cfgr; const ADCConversionGroup *grpp = adcp->grpp; osalDbgAssert(!STM32_ADC_DUAL_MODE || ((grpp->num_channels & 1) == 0), "odd number of channels in dual mode"); /* Calculating control registers values.*/ dmamode = adcp->dmamode; ccr = grpp->ccr | (adcp->adcc->CCR & (ADC_CCR_CKMODE_MASK | ADC_CCR_MDMA_MASK)); cfgr = grpp->cfgr | ADC_CFGR_DMAEN; if (grpp->circular) { dmamode |= STM32_DMA_CR_CIRC; #if STM32_ADC_DUAL_MODE ccr |= ADC_CCR_DMACFG_CIRCULAR; #else cfgr |= ADC_CFGR_DMACFG_CIRCULAR; #endif if (adcp->depth > 1) { /* If circular buffer depth > 1, then the half transfer interrupt is enabled in order to allow streaming processing.*/ dmamode |= STM32_DMA_CR_HTIE; } } /* DMA setup.*/ dmaStreamSetMemory0(adcp->dmastp, adcp->samples); #if STM32_ADC_DUAL_MODE dmaStreamSetTransactionSize(adcp->dmastp, ((uint32_t)grpp->num_channels/2) * (uint32_t)adcp->depth); #else dmaStreamSetTransactionSize(adcp->dmastp, (uint32_t)grpp->num_channels * (uint32_t)adcp->depth); #endif dmaStreamSetMode(adcp->dmastp, dmamode); dmaStreamEnable(adcp->dmastp); /* Configuring the CCR register with the static settings ORed with the user-specified settings in the conversion group configuration structure.*/ adcp->adcc->CCR = ccr; /* ADC setup, if it is defined a callback for the analog watch dog then it is enabled.*/ adcp->adcm->ISR = adcp->adcm->ISR; adcp->adcm->IER = ADC_IER_OVR | ADC_IER_AWD1; adcp->adcm->TR1 = grpp->tr1; #if STM32_ADC_DUAL_MODE adcp->adcm->SMPR1 = grpp->smpr[0]; adcp->adcm->SMPR2 = grpp->smpr[1]; adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2); adcp->adcm->SQR2 = grpp->sqr[1]; adcp->adcm->SQR3 = grpp->sqr[2]; adcp->adcm->SQR4 = grpp->sqr[3]; adcp->adcs->SMPR1 = grpp->ssmpr[0]; adcp->adcs->SMPR2 = grpp->ssmpr[1]; adcp->adcs->SQR1 = grpp->ssqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2); adcp->adcs->SQR2 = grpp->ssqr[1]; adcp->adcs->SQR3 = grpp->ssqr[2]; adcp->adcs->SQR4 = grpp->ssqr[3]; #else /* !STM32_ADC_DUAL_MODE */ adcp->adcm->SMPR1 = grpp->smpr[0]; adcp->adcm->SMPR2 = grpp->smpr[1]; adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels); adcp->adcm->SQR2 = grpp->sqr[1]; adcp->adcm->SQR3 = grpp->sqr[2]; adcp->adcm->SQR4 = grpp->sqr[3]; #endif /* !STM32_ADC_DUAL_MODE */ /* ADC configuration.*/ adcp->adcm->CFGR = cfgr; /* Starting conversion.*/ adcp->adcm->CR |= ADC_CR_ADSTART; } /** * @brief Stops an ongoing conversion. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_stop_conversion(ADCDriver *adcp) { dmaStreamDisable(adcp->dmastp); adc_lld_stop_adc(adcp); } #endif /* HAL_USE_ADC */ /** @} */