/* ChibiOS - Copyright (C) 2006..2018 Giovanni Di Sirio Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * @file SPIv2/hal_spi_lld.c * @brief STM32 SPI subsystem low level driver source. * * @addtogroup SPI * @{ */ #include "hal.h" #if HAL_USE_SPI || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ #define SPI1_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI1_RX_DMA_STREAM, \ STM32_SPI1_RX_DMA_CHN) #define SPI1_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI1_TX_DMA_STREAM, \ STM32_SPI1_TX_DMA_CHN) #define SPI2_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI2_RX_DMA_STREAM, \ STM32_SPI2_RX_DMA_CHN) #define SPI2_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI2_TX_DMA_STREAM, \ STM32_SPI2_TX_DMA_CHN) #define SPI3_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI3_RX_DMA_STREAM, \ STM32_SPI3_RX_DMA_CHN) #define SPI3_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI3_TX_DMA_STREAM, \ STM32_SPI3_TX_DMA_CHN) #define SPI4_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI4_RX_DMA_STREAM, \ STM32_SPI4_RX_DMA_CHN) #define SPI4_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI4_TX_DMA_STREAM, \ STM32_SPI4_TX_DMA_CHN) #define SPI5_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI5_RX_DMA_STREAM, \ STM32_SPI5_RX_DMA_CHN) #define SPI5_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI5_TX_DMA_STREAM, \ STM32_SPI5_TX_DMA_CHN) #define SPI6_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI6_RX_DMA_STREAM, \ STM32_SPI6_RX_DMA_CHN) #define SPI6_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_SPI_SPI6_TX_DMA_STREAM, \ STM32_SPI6_TX_DMA_CHN) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief SPI1 driver identifier.*/ #if STM32_SPI_USE_SPI1 || defined(__DOXYGEN__) SPIDriver SPID1; #endif /** @brief SPI2 driver identifier.*/ #if STM32_SPI_USE_SPI2 || defined(__DOXYGEN__) SPIDriver SPID2; #endif /** @brief SPI3 driver identifier.*/ #if STM32_SPI_USE_SPI3 || defined(__DOXYGEN__) SPIDriver SPID3; #endif /** @brief SPI4 driver identifier.*/ #if STM32_SPI_USE_SPI4 || defined(__DOXYGEN__) SPIDriver SPID4; #endif /** @brief SPI5 driver identifier.*/ #if STM32_SPI_USE_SPI5 || defined(__DOXYGEN__) SPIDriver SPID5; #endif /** @brief SPI6 driver identifier.*/ #if STM32_SPI_USE_SPI6 || defined(__DOXYGEN__) SPIDriver SPID6; #endif /*===========================================================================*/ /* Driver local variables and types. */ /*===========================================================================*/ static const uint16_t dummytx = 0xFFFFU; static uint16_t dummyrx; /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Shared end-of-rx service routine. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] flags pre-shifted content of the ISR register */ static void spi_lld_serve_rx_interrupt(SPIDriver *spip, uint32_t flags) { /* DMA errors handling.*/ #if defined(STM32_SPI_DMA_ERROR_HOOK) if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) { STM32_SPI_DMA_ERROR_HOOK(spip); } #else (void)flags; #endif if (spip->config->circular) { if ((flags & STM32_DMA_ISR_HTIF) != 0U) { /* Half buffer interrupt.*/ _spi_isr_code_half1(spip); } else { /* End buffer interrupt.*/ _spi_isr_code_half2(spip); } } else { /* Stopping DMAs.*/ dmaStreamDisable(spip->dmatx); dmaStreamDisable(spip->dmarx); /* Portable SPI ISR code defined in the high level driver, note, it is a macro.*/ _spi_isr_code(spip); } } /** * @brief Shared end-of-tx service routine. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] flags pre-shifted content of the ISR register */ static void spi_lld_serve_tx_interrupt(SPIDriver *spip, uint32_t flags) { /* DMA errors handling.*/ #if defined(STM32_SPI_DMA_ERROR_HOOK) (void)spip; if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) { STM32_SPI_DMA_ERROR_HOOK(spip); } #else (void)spip; (void)flags; #endif } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level SPI driver initialization. * * @notapi */ void spi_lld_init(void) { #if STM32_SPI_USE_SPI1 spiObjectInit(&SPID1); SPID1.spi = SPI1; #if STM32_DMA_SUPPORTS_DMAMUX SPID1.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI1_RX_DMA_CHANNEL); SPID1.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI1_TX_DMA_CHANNEL); #else SPID1.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI1_RX_DMA_STREAM); SPID1.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI1_TX_DMA_STREAM); #endif SPID1.rxdmamode = STM32_DMA_CR_CHSEL(SPI1_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI1_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; SPID1.txdmamode = STM32_DMA_CR_CHSEL(SPI1_TX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI1_DMA_PRIORITY) | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; #endif #if STM32_SPI_USE_SPI2 spiObjectInit(&SPID2); SPID2.spi = SPI2; #if STM32_DMA_SUPPORTS_DMAMUX SPID2.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI2_RX_DMA_CHANNEL); SPID2.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI2_TX_DMA_CHANNEL); #else SPID2.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI2_RX_DMA_STREAM); SPID2.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI2_TX_DMA_STREAM); #endif SPID2.rxdmamode = STM32_DMA_CR_CHSEL(SPI2_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI2_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; SPID2.txdmamode = STM32_DMA_CR_CHSEL(SPI2_TX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI2_DMA_PRIORITY) | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; #endif #if STM32_SPI_USE_SPI3 spiObjectInit(&SPID3); SPID3.spi = SPI3; #if STM32_DMA_SUPPORTS_DMAMUX SPID3.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI3_RX_DMA_CHANNEL); SPID3.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI3_TX_DMA_CHANNEL); #else SPID3.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI3_RX_DMA_STREAM); SPID3.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI3_TX_DMA_STREAM); #endif SPID3.rxdmamode = STM32_DMA_CR_CHSEL(SPI3_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI3_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; SPID3.txdmamode = STM32_DMA_CR_CHSEL(SPI3_TX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI3_DMA_PRIORITY) | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; #endif #if STM32_SPI_USE_SPI4 spiObjectInit(&SPID4); SPID4.spi = SPI4; #if STM32_DMA_SUPPORTS_DMAMUX SPID4.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI4_RX_DMA_CHANNEL); SPID4.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI4_TX_DMA_CHANNEL); #else SPID4.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI4_RX_DMA_STREAM); SPID4.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI4_TX_DMA_STREAM); #endif SPID4.rxdmamode = STM32_DMA_CR_CHSEL(SPI4_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI4_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; SPID4.txdmamode = STM32_DMA_CR_CHSEL(SPI4_TX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI4_DMA_PRIORITY) | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; #endif #if STM32_SPI_USE_SPI5 spiObjectInit(&SPID5); SPID5.spi = SPI5; #if STM32_DMA_SUPPORTS_DMAMUX SPID5.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI5_RX_DMA_CHANNEL); SPID5.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI5_TX_DMA_CHANNEL); #else SPID5.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI5_RX_DMA_STREAM); SPID5.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI5_TX_DMA_STREAM); #endif SPID5.rxdmamode = STM32_DMA_CR_CHSEL(SPI5_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI5_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; SPID5.txdmamode = STM32_DMA_CR_CHSEL(SPI5_TX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI5_DMA_PRIORITY) | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; #endif #if STM32_SPI_USE_SPI6 spiObjectInit(&SPID6); SPID6.spi = SPI6; #if STM32_DMA_SUPPORTS_DMAMUX SPID6.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI6_RX_DMA_CHANNEL); SPID6.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI6_TX_DMA_CHANNEL); #else SPID6.dmarx = STM32_DMA_STREAM(STM32_SPI_SPI6_RX_DMA_STREAM); SPID6.dmatx = STM32_DMA_STREAM(STM32_SPI_SPI6_TX_DMA_STREAM); #endif SPID6.rxdmamode = STM32_DMA_CR_CHSEL(SPI6_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI6_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; SPID6.txdmamode = STM32_DMA_CR_CHSEL(SPI6_TX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_SPI_SPI6_DMA_PRIORITY) | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; #endif } /** * @brief Configures and activates the SPI peripheral. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_start(SPIDriver *spip) { uint32_t ds; /* If in stopped state then enables the SPI and DMA clocks.*/ if (spip->state == SPI_STOP) { #if STM32_SPI_USE_SPI1 if (&SPID1 == spip) { bool b; b = dmaStreamAllocate(spip->dmarx, STM32_SPI_SPI1_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_rx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); b = dmaStreamAllocate(spip->dmatx, STM32_SPI_SPI1_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_tx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); rccEnableSPI1(true); #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(spip->dmarx, STM32_DMAMUX1_SPI1_RX); dmaSetRequestSource(spip->dmatx, STM32_DMAMUX1_SPI1_TX); #endif } #endif #if STM32_SPI_USE_SPI2 if (&SPID2 == spip) { bool b; b = dmaStreamAllocate(spip->dmarx, STM32_SPI_SPI2_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_rx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); b = dmaStreamAllocate(spip->dmatx, STM32_SPI_SPI2_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_tx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); rccEnableSPI2(true); #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(spip->dmarx, STM32_DMAMUX1_SPI2_RX); dmaSetRequestSource(spip->dmatx, STM32_DMAMUX1_SPI2_TX); #endif } #endif #if STM32_SPI_USE_SPI3 if (&SPID3 == spip) { bool b; b = dmaStreamAllocate(spip->dmarx, STM32_SPI_SPI3_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_rx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); b = dmaStreamAllocate(spip->dmatx, STM32_SPI_SPI3_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_tx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); rccEnableSPI3(true); #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(spip->dmarx, STM32_DMAMUX1_SPI3_RX); dmaSetRequestSource(spip->dmatx, STM32_DMAMUX1_SPI3_TX); #endif } #endif #if STM32_SPI_USE_SPI4 if (&SPID4 == spip) { bool b; b = dmaStreamAllocate(spip->dmarx, STM32_SPI_SPI4_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_rx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); b = dmaStreamAllocate(spip->dmatx, STM32_SPI_SPI4_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_tx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); rccEnableSPI4(true); #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(spip->dmarx, STM32_DMAMUX1_SPI4_RX); dmaSetRequestSource(spip->dmatx, STM32_DMAMUX1_SPI4_TX); #endif } #endif #if STM32_SPI_USE_SPI5 if (&SPID5 == spip) { bool b; b = dmaStreamAllocate(spip->dmarx, STM32_SPI_SPI5_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_rx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); b = dmaStreamAllocate(spip->dmatx, STM32_SPI_SPI5_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_tx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); rccEnableSPI5(true); #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(spip->dmarx, STM32_DMAMUX1_SPI5_RX); dmaSetRequestSource(spip->dmatx, STM32_DMAMUX1_SPI5_TX); #endif } #endif #if STM32_SPI_USE_SPI6 if (&SPID6 == spip) { bool b; b = dmaStreamAllocate(spip->dmarx, STM32_SPI_SPI6_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_rx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); b = dmaStreamAllocate(spip->dmatx, STM32_SPI_SPI6_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_tx_interrupt, (void *)spip); osalDbgAssert(!b, "stream already allocated"); rccEnableSPI6(true); #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(spip->dmarx, STM32_DMAMUX1_SPI6_RX); dmaSetRequestSource(spip->dmatx, STM32_DMAMUX1_SPI6_TX); #endif } #endif /* DMA setup.*/ dmaStreamSetPeripheral(spip->dmarx, &spip->spi->DR); dmaStreamSetPeripheral(spip->dmatx, &spip->spi->DR); } /* Configuration-specific DMA setup.*/ ds = spip->config->cr2 & SPI_CR2_DS; if (!ds || (ds <= (SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0))) { /* Frame width is 8 bits or smaller.*/ spip->rxdmamode = (spip->rxdmamode & ~STM32_DMA_CR_SIZE_MASK) | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE; spip->txdmamode = (spip->txdmamode & ~STM32_DMA_CR_SIZE_MASK) | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE; } else { /* Frame width is larger than 8 bits.*/ spip->rxdmamode = (spip->rxdmamode & ~STM32_DMA_CR_SIZE_MASK) | STM32_DMA_CR_PSIZE_HWORD | STM32_DMA_CR_MSIZE_HWORD; spip->txdmamode = (spip->txdmamode & ~STM32_DMA_CR_SIZE_MASK) | STM32_DMA_CR_PSIZE_HWORD | STM32_DMA_CR_MSIZE_HWORD; } if (spip->config->circular) { spip->rxdmamode |= (STM32_DMA_CR_CIRC | STM32_DMA_CR_HTIE); spip->txdmamode |= (STM32_DMA_CR_CIRC | STM32_DMA_CR_HTIE); } else { spip->rxdmamode &= ~(STM32_DMA_CR_CIRC | STM32_DMA_CR_HTIE); spip->txdmamode &= ~(STM32_DMA_CR_CIRC | STM32_DMA_CR_HTIE); } /* SPI setup and enable.*/ spip->spi->CR1 &= ~SPI_CR1_SPE; spip->spi->CR1 = spip->config->cr1 | SPI_CR1_MSTR; spip->spi->CR2 = spip->config->cr2 | SPI_CR2_FRXTH | SPI_CR2_SSOE | SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN; spip->spi->CR1 |= SPI_CR1_SPE; } /** * @brief Deactivates the SPI peripheral. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_stop(SPIDriver *spip) { /* If in ready state then disables the SPI clock.*/ if (spip->state == SPI_READY) { /* SPI disable.*/ spip->spi->CR1 &= ~SPI_CR1_SPE; spip->spi->CR1 = 0; spip->spi->CR2 = 0; dmaStreamRelease(spip->dmarx); dmaStreamRelease(spip->dmatx); #if STM32_SPI_USE_SPI1 if (&SPID1 == spip) rccDisableSPI1(); #endif #if STM32_SPI_USE_SPI2 if (&SPID2 == spip) rccDisableSPI2(); #endif #if STM32_SPI_USE_SPI3 if (&SPID3 == spip) rccDisableSPI3(); #endif #if STM32_SPI_USE_SPI4 if (&SPID4 == spip) rccDisableSPI4(); #endif #if STM32_SPI_USE_SPI5 if (&SPID5 == spip) rccDisableSPI5(); #endif #if STM32_SPI_USE_SPI6 if (&SPID6 == spip) rccDisableSPI6(); #endif } } #if (SPI_SELECT_MODE == SPI_SELECT_MODE_LLD) || defined(__DOXYGEN__) /** * @brief Asserts the slave select signal and prepares for transfers. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_select(SPIDriver *spip) { /* No implementation on STM32.*/ } /** * @brief Deasserts the slave select signal. * @details The previously selected peripheral is unselected. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_unselect(SPIDriver *spip) { /* No implementation on STM32.*/ } #endif /** * @brief Ignores data on the SPI bus. * @details This asynchronous function starts the transmission of a series of * idle words on the SPI bus and ignores the received data. * @post At the end of the operation the configured callback is invoked. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to be ignored * * @notapi */ void spi_lld_ignore(SPIDriver *spip, size_t n) { osalDbgAssert(n < 65536, "unsupported DMA transfer size"); dmaStreamSetMemory0(spip->dmarx, &dummyrx); dmaStreamSetTransactionSize(spip->dmarx, n); dmaStreamSetMode(spip->dmarx, spip->rxdmamode); dmaStreamSetMemory0(spip->dmatx, &dummytx); dmaStreamSetTransactionSize(spip->dmatx, n); dmaStreamSetMode(spip->dmatx, spip->txdmamode); dmaStreamEnable(spip->dmarx); dmaStreamEnable(spip->dmatx); } /** * @brief Exchanges data on the SPI bus. * @details This asynchronous function starts a simultaneous transmit/receive * operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to be exchanged * @param[in] txbuf the pointer to the transmit buffer * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void spi_lld_exchange(SPIDriver *spip, size_t n, const void *txbuf, void *rxbuf) { osalDbgAssert(n < 65536, "unsupported DMA transfer size"); dmaStreamSetMemory0(spip->dmarx, rxbuf); dmaStreamSetTransactionSize(spip->dmarx, n); dmaStreamSetMode(spip->dmarx, spip->rxdmamode | STM32_DMA_CR_MINC); dmaStreamSetMemory0(spip->dmatx, txbuf); dmaStreamSetTransactionSize(spip->dmatx, n); dmaStreamSetMode(spip->dmatx, spip->txdmamode | STM32_DMA_CR_MINC); dmaStreamEnable(spip->dmarx); dmaStreamEnable(spip->dmatx); } /** * @brief Sends data over the SPI bus. * @details This asynchronous function starts a transmit operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to send * @param[in] txbuf the pointer to the transmit buffer * * @notapi */ void spi_lld_send(SPIDriver *spip, size_t n, const void *txbuf) { osalDbgAssert(n < 65536, "unsupported DMA transfer size"); dmaStreamSetMemory0(spip->dmarx, &dummyrx); dmaStreamSetTransactionSize(spip->dmarx, n); dmaStreamSetMode(spip->dmarx, spip->rxdmamode); dmaStreamSetMemory0(spip->dmatx, txbuf); dmaStreamSetTransactionSize(spip->dmatx, n); dmaStreamSetMode(spip->dmatx, spip->txdmamode | STM32_DMA_CR_MINC); dmaStreamEnable(spip->dmarx); dmaStreamEnable(spip->dmatx); } /** * @brief Receives data from the SPI bus. * @details This asynchronous function starts a receive operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to receive * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void spi_lld_receive(SPIDriver *spip, size_t n, void *rxbuf) { osalDbgAssert(n < 65536, "unsupported DMA transfer size"); dmaStreamSetMemory0(spip->dmarx, rxbuf); dmaStreamSetTransactionSize(spip->dmarx, n); dmaStreamSetMode(spip->dmarx, spip->rxdmamode | STM32_DMA_CR_MINC); dmaStreamSetMemory0(spip->dmatx, &dummytx); dmaStreamSetTransactionSize(spip->dmatx, n); dmaStreamSetMode(spip->dmatx, spip->txdmamode); dmaStreamEnable(spip->dmarx); dmaStreamEnable(spip->dmatx); } #if (SPI_SUPPORTS_CIRCULAR == TRUE) || defined(__DOXYGEN__) /** * @brief Aborts the ongoing SPI operation, if any. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_abort(SPIDriver *spip) { /* Stopping DMAs.*/ dmaStreamDisable(spip->dmatx); dmaStreamDisable(spip->dmarx); } #endif /* SPI_SUPPORTS_CIRCULAR == TRUE */ /** * @brief Exchanges one frame using a polled wait. * @details This synchronous function exchanges one frame using a polled * synchronization method. This function is useful when exchanging * small amount of data on high speed channels, usually in this * situation is much more efficient just wait for completion using * polling than suspending the thread waiting for an interrupt. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] frame the data frame to send over the SPI bus * @return The received data frame from the SPI bus. */ uint16_t spi_lld_polled_exchange(SPIDriver *spip, uint16_t frame) { /* * Data register must be accessed with the appropriate data size. * Byte size access (uint8_t *) for transactions that are <= 8-bit. * Halfword size access (uint16_t) for transactions that are <= 8-bit. */ if ((spip->config->cr2 & SPI_CR2_DS) <= (SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0)) { volatile uint8_t *spidr = (volatile uint8_t *)&spip->spi->DR; *spidr = (uint8_t)frame; while ((spip->spi->SR & SPI_SR_RXNE) == 0) ; return (uint16_t)*spidr; } else { spip->spi->DR = frame; while ((spip->spi->SR & SPI_SR_RXNE) == 0) ; return spip->spi->DR; } } #endif /* HAL_USE_SPI */ /** @} */