/* ChibiOS - Copyright (C) 2006..2018 Giovanni Di Sirio Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * @file ADCv4/hal_adc_lld.c * @brief STM32 ADC subsystem low level driver source. * * @addtogroup ADC * @{ */ #include "hal.h" #if HAL_USE_ADC || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ #if STM32_ADC_DUAL_MODE == TRUE #if STM32_ADC_COMPACT_SAMPLES == TRUE /* Compact type dual mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD) #define ADC_DMA_DAMDF ADC_CCR_DAMDF_HWORD #else /* STM32_ADC_COMPACT_SAMPLES == FALSE */ /* Large type dual mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_PSIZE_WORD) #define ADC_DMA_DAMDF ADC_CCR_DAMDF_WORD #endif /* !STM32_ADC_COMPACT_SAMPLES */ #else /* STM32_ADC_DUAL_MODE == FALSE */ #if STM32_ADC_COMPACT_SAMPLES /* Compact type single mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_PSIZE_BYTE) #define ADC_DMA_DAMDF ADC_CCR_DAMDF_DISABLED #else /* STM32_ADC_COMPACT_SAMPLES == FALSE */ /* Large type single mode.*/ #define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD) #define ADC_DMA_DAMDF ADC_CCR_DAMDF_DISABLED #endif /* STM32_ADC_COMPACT_SAMPLES == FALSE */ #endif /* STM32_ADC_DUAL_MODE == FALSE */ /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief ADC1 driver identifier.*/ #if STM32_ADC_USE_ADC12 || defined(__DOXYGEN__) ADCDriver ADCD1; #endif /** @brief ADC3 driver identifier.*/ #if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__) ADCDriver ADCD3; #endif /*===========================================================================*/ /* Driver local variables and types. */ /*===========================================================================*/ static const ADCConfig default_config = { .difsel = 0U }; /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Enables the ADC voltage regulator. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_vreg_on(ADCDriver *adcp) { adcp->adcm->CR = ADC_CR_ADVREGEN; #if STM32_ADC_DUAL_MODE adcp->adcs->CR = ADC_CR_ADVREGEN; #endif osalSysPolledDelayX(OSAL_US2RTC(STM32_SYS_CK, 10U)); } /** * @brief Disables the ADC voltage regulator. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_vreg_off(ADCDriver *adcp) { adcp->adcm->CR = ADC_CR_DEEPPWD; #if STM32_ADC_DUAL_MODE adcp->adcs->CR = ADC_CR_DEEPPWD; #endif } /** * @brief Enables the ADC analog circuit. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_analog_on(ADCDriver *adcp) { adcp->adcm->ISR = ADC_ISR_ADRD; adcp->adcm->CR |= ADC_CR_ADEN; while ((adcp->adcm->ISR & ADC_ISR_ADRD) == 0U) ; #if STM32_ADC_DUAL_MODE adcp->adcs->ISR = ADC_ISR_ADRD; adcp->adcs->CR |= ADC_CR_ADEN; while ((adcp->adcs->ISR & ADC_ISR_ADRD) == 0U) ; #endif } /** * @brief Disables the ADC analog circuit. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_analog_off(ADCDriver *adcp) { adcp->adcm->CR |= ADC_CR_ADDIS; while ((adcp->adcm->CR & ADC_CR_ADDIS) != 0U) ; #if STM32_ADC_DUAL_MODE adcp->adcs->CR |= ADC_CR_ADDIS; while ((adcp->adcs->CR & ADC_CR_ADDIS) != 0U) ; #endif } /** * @brief Calibrates and ADC unit. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_calibrate(ADCDriver *adcp) { osalDbgAssert(adcp->adcm->CR == ADC_CR_ADVREGEN, "invalid register state"); adcp->adcm->CR &= ~(ADC_CR_ADCALDIF | ADC_CR_ADCALLIN); adcp->adcm->CR |= adcp->config->calibration & (ADC_CR_ADCALDIF | ADC_CR_ADCALLIN); adcp->adcm->CR |= ADC_CR_ADCAL; while ((adcp->adcm->CR & ADC_CR_ADCAL) != 0U) ; #if STM32_ADC_DUAL_MODE osalDbgAssert(adcp->adcs->CR == ADC_CR_ADVREGEN, "invalid register state"); adcp->adcs->CR &= ~(ADC_CR_ADCALDIF | ADC_CR_ADCALLIN); adcp->adcs->CR |= adcp->config->calibration & (ADC_CR_ADCALDIF | ADC_CR_ADCALLIN); adcp->adcs->CR |= ADC_CR_ADCAL; while ((adcp->adcs->CR & ADC_CR_ADCAL) != 0U) ; #endif } /** * @brief Stops an ongoing conversion, if any. * * @param[in] adcp pointer to the @p ADCDriver object */ static void adc_lld_stop_adc(ADCDriver *adcp) { if (adcp->adcm->CR & ADC_CR_ADSTART) { adcp->adcm->CR |= ADC_CR_ADSTP; while (adcp->adcm->CR & ADC_CR_ADSTP) ; } adcp->adcm->PCSEL = 0U; } /** * @brief ADC DMA ISR service routine. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] flags pre-shifted content of the ISR register */ static void adc_lld_serve_dma_interrupt(ADCDriver *adcp, uint32_t flags) { /* DMA errors handling.*/ if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) { /* DMA, this could help only if the DMA tries to access an unmapped address space or violates alignment rules.*/ _adc_isr_error_code(adcp, ADC_ERR_DMAFAILURE); } else { /* It is possible that the conversion group has already be reset by the ADC error handler, in this case this interrupt is spurious.*/ if (adcp->grpp != NULL) { if ((flags & STM32_DMA_ISR_TCIF) != 0) { /* Transfer complete processing.*/ _adc_isr_full_code(adcp); } else if ((flags & STM32_DMA_ISR_HTIF) != 0) { /* Half transfer processing.*/ _adc_isr_half_code(adcp); } } } } /** * @brief ADC BDMA ISR service routine. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] flags pre-shifted content of the ISR register */ static void adc_lld_serve_bdma_interrupt(ADCDriver *adcp, uint32_t flags) { /* DMA errors handling.*/ if ((flags & STM32_BDMA_ISR_TEIF) != 0) { /* DMA, this could help only if the DMA tries to access an unmapped address space or violates alignment rules.*/ _adc_isr_error_code(adcp, ADC_ERR_DMAFAILURE); } else { /* It is possible that the conversion group has already be reset by the ADC error handler, in this case this interrupt is spurious.*/ if (adcp->grpp != NULL) { if ((flags & STM32_BDMA_ISR_TCIF) != 0) { /* Transfer complete processing.*/ _adc_isr_full_code(adcp); } else if ((flags & STM32_BDMA_ISR_HTIF) != 0) { /* Half transfer processing.*/ _adc_isr_half_code(adcp); } } } } /** * @brief ADC ISR service routine. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] isr content of the ISR register */ static void adc_lld_serve_interrupt(ADCDriver *adcp, uint32_t isr) { /* It could be a spurious interrupt caused by overflows after DMA disabling, just ignore it in this case.*/ if (adcp->grpp != NULL) { /* Note, an overflow may occur after the conversion ended before the driver is able to stop the ADC, this is why the state is checked too.*/ if ((isr & ADC_ISR_OVR) && (adcp->state == ADC_ACTIVE)) { /* ADC overflow condition, this could happen only if the DMA is unable to read data fast enough.*/ _adc_isr_error_code(adcp, ADC_ERR_OVERFLOW); } if (isr & ADC_ISR_AWD1) { /* Analog watchdog error.*/ _adc_isr_error_code(adcp, ADC_ERR_AWD1); } if (isr & ADC_ISR_AWD2) { /* Analog watchdog error.*/ _adc_isr_error_code(adcp, ADC_ERR_AWD2); } if (isr & ADC_ISR_AWD3) { /* Analog watchdog error.*/ _adc_isr_error_code(adcp, ADC_ERR_AWD3); } } } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if (STM32_ADC_USE_ADC12 == TRUE) || defined(__DOXYGEN__) /** * @brief ADC1/ADC2 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_ADC12_HANDLER) { uint32_t isr; OSAL_IRQ_PROLOGUE(); isr = ADC1->ISR; #if STM32_ADC_DUAL_MODE == TRUE isr |= ADC2->ISR; #endif ADC1->ISR = isr; #if STM32_ADC_DUAL_MODE == TRUE ADC2->ISR = isr; #endif #if defined(STM32_ADC_ADC12_IRQ_HOOK) STM32_ADC_ADC12_IRQ_HOOK #endif adc_lld_serve_interrupt(&ADCD1, isr); OSAL_IRQ_EPILOGUE(); } #endif /* STM32_ADC_USE_ADC12 == TRUE */ #if (STM32_ADC_USE_ADC3 == TRUE) || defined(__DOXYGEN__) /** * @brief ADC3 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(STM32_ADC3_HANDLER) { uint32_t isr; OSAL_IRQ_PROLOGUE(); isr = ADC3->ISR; ADC3->ISR = isr; #if defined(STM32_ADC_ADC3_IRQ_HOOK) STM32_ADC_ADC3_IRQ_HOOK #endif adc_lld_serve_interrupt(&ADCD3, isr); OSAL_IRQ_EPILOGUE(); } #endif /* STM32_ADC_USE_ADC3 == TRUE */ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level ADC driver initialization. * * @notapi */ void adc_lld_init(void) { #if STM32_ADC_USE_ADC12 == TRUE /* Driver initialization.*/ adcObjectInit(&ADCD1); ADCD1.adcc = ADC12_COMMON; ADCD1.adcm = ADC1; #if STM32_ADC_DUAL_MODE ADCD1.adcs = ADC2; #endif ADCD1.data.dma = NULL; ADCD1.dmamode = ADC_DMA_SIZE | STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; nvicEnableVector(STM32_ADC12_NUMBER, STM32_ADC_ADC12_IRQ_PRIORITY); #endif /* STM32_ADC_USE_ADC12 == TRUE */ #if STM32_ADC_USE_ADC3 == TRUE /* Driver initialization.*/ adcObjectInit(&ADCD3); ADCD3.adcc = ADC3_COMMON; ADCD3.adcm = ADC3; ADCD3.data.bdma = NULL; ADCD3.dmamode = ADC_DMA_SIZE | STM32_DMA_CR_PL(STM32_ADC_ADC3_DMA_PRIORITY) | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE | STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; nvicEnableVector(STM32_ADC3_NUMBER, STM32_ADC_ADC3_IRQ_PRIORITY); #endif /* STM32_ADC_USE_ADC3 == TRUE */ /* ADC units pre-initializations.*/ #if (STM32_HAS_ADC1 == TRUE) && (STM32_HAS_ADC2 == TRUE) #if STM32_ADC_USE_ADC12 == TRUE rccEnableADC12(true); rccResetADC12(); ADC12_COMMON->CCR = STM32_ADC_ADC12_CLOCK_MODE | ADC_DMA_DAMDF; rccDisableADC12(); #endif #if STM32_ADC_USE_ADC3 == TRUE rccEnableADC3(true); rccResetADC3(); ADC3_COMMON->CCR = STM32_ADC_ADC3_CLOCK_MODE | ADC_DMA_DAMDF; rccDisableADC3(); #endif #endif } /** * @brief Configures and activates the ADC peripheral. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_start(ADCDriver *adcp) { /* Handling the default configuration.*/ if (adcp->config == NULL) { adcp->config = &default_config; } /* If in stopped state then enables the ADC and DMA clocks.*/ if (adcp->state == ADC_STOP) { #if STM32_ADC_USE_ADC12 == TRUE if (&ADCD1 == adcp) { adcp->data.dma = dmaStreamAllocI(STM32_ADC_ADC12_DMA_STREAM, STM32_ADC_ADC12_IRQ_PRIORITY, (stm32_dmaisr_t)adc_lld_serve_dma_interrupt, (void *)adcp); osalDbgAssert(adcp->data.dma != NULL, "unable to allocate stream"); rccEnableADC12(true); dmaSetRequestSource(adcp->data.dma, STM32_DMAMUX1_ADC1); } #endif /* STM32_ADC_USE_ADC12 == TRUE */ #if STM32_ADC_USE_ADC3 == TRUE if (&ADCD3 == adcp) { adcp->data.bdma = bdmaStreamAllocI(STM32_ADC_ADC3_BDMA_STREAM, STM32_ADC_ADC3_IRQ_PRIORITY, (stm32_dmaisr_t)adc_lld_serve_bdma_interrupt, (void *)adcp); osalDbgAssert(adcp->data.bdma != NULL, "unable to allocate stream"); rccEnableADC3(true); bdmaSetRequestSource(adcp->data.bdma, STM32_DMAMUX2_ADC3_REQ); } #endif /* STM32_ADC_USE_ADC3 == TRUE */ /* Setting DMA peripheral-side pointer.*/ #if STM32_ADC_DUAL_MODE == TRUE dmaStreamSetPeripheral(adcp->data.dma, &adcp->adcc->CDR); #else dmaStreamSetPeripheral(adcp->data.dma, &adcp->adcm->DR); #endif /* Differential channels setting.*/ #if STM32_ADC_DUAL_MODE == TRUE adcp->adcm->DIFSEL = adcp->config->difsel; adcp->adcs->DIFSEL = adcp->config->difsel; #else adcp->adcm->DIFSEL = adcp->config->difsel; #endif /* Master ADC calibration.*/ adc_lld_vreg_on(adcp); adc_lld_calibrate(adcp); /* Master ADC enabled here in order to reduce conversions latencies.*/ adc_lld_analog_on(adcp); } } /** * @brief Deactivates the ADC peripheral. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_stop(ADCDriver *adcp) { /* If in ready state then disables the ADC clock and analog part.*/ if (adcp->state == ADC_READY) { /* Stopping the ongoing conversion, if any.*/ adc_lld_stop_adc(adcp); /* Disabling ADC analog circuit and regulator.*/ adc_lld_analog_off(adcp); adc_lld_vreg_off(adcp); #if STM32_ADC_USE_ADC12 == TRUE if (&ADCD1 == adcp) { /* Releasing the associated DMA channel.*/ dmaStreamFreeI(adcp->data.dma); adcp->data.dma = NULL; /* Resetting CCR options except default ones.*/ adcp->adcc->CCR = STM32_ADC_ADC12_CLOCK_MODE | ADC_DMA_DAMDF; rccDisableADC12(); } #endif #if STM32_ADC_USE_ADC3 == TRUE if (&ADCD3 == adcp) { /* Releasing the associated BDMA channel.*/ bdmaStreamFreeI(adcp->data.bdma); adcp->data.bdma = NULL; /* Resetting CCR options except default ones.*/ adcp->adcc->CCR = STM32_ADC_ADC3_CLOCK_MODE | ADC_DMA_DAMDF; rccDisableADC3(); } #endif } } /** * @brief Starts an ADC conversion. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_start_conversion(ADCDriver *adcp) { uint32_t dmamode, cfgr; const ADCConversionGroup *grpp = adcp->grpp; #if STM32_ADC_DUAL_MODE uint32_t ccr = grpp->ccr & ~(ADC_CCR_CKMODE_MASK | ADC_CCR_MDMA_MASK); #endif osalDbgAssert(!STM32_ADC_DUAL_MODE || ((grpp->num_channels & 1) == 0), "odd number of channels in dual mode"); /* Calculating control registers values.*/ dmamode = adcp->dmamode; if (grpp->circular) { dmamode |= STM32_DMA_CR_CIRC; cfgr = grpp->cfgr | ADC_CFGR_DMNGT_CIRCULAR; if (adcp->depth > 1) { /* If circular buffer depth > 1, then the half transfer interrupt is enabled in order to allow streaming processing.*/ dmamode |= STM32_DMA_CR_HTIE; } else { cfgr = grpp->cfgr | ADC_CFGR_DMNGT_ONESHOT; } } /* DMA setup.*/ dmaStreamSetMemory0(adcp->data.dma, adcp->samples); #if STM32_ADC_DUAL_MODE dmaStreamSetTransactionSize(adcp->data.dma, ((uint32_t)grpp->num_channels / 2U) * (uint32_t)adcp->depth); #else dmaStreamSetTransactionSize(adcp->data.dma, (uint32_t)grpp->num_channels * (uint32_t)adcp->depth); #endif dmaStreamSetMode(adcp->data.dma, dmamode); dmaStreamEnable(adcp->data.dma); /* ADC setup, if it is defined a callback for the analog watch dog then it is enabled.*/ adcp->adcm->ISR = adcp->adcm->ISR; adcp->adcm->IER = ADC_IER_OVR | ADC_IER_AWD1; #if STM32_ADC_DUAL_MODE /* Configuring the CCR register with the user-specified settings in the conversion group configuration structure, static settings are preserved.*/ adcp->adcc->CCR = (adcp->adcc->CCR & (ADC_CCR_CKMODE_MASK | ADC_CCR_MDMA_MASK)) | ccr; adcp->adcm->CFGR2 = grpp->cfgr2; adcp->adcm->PCSEL = grpp->pcsel; adcp->adcm->LTR1 = grpp->ltr1; adcp->adcm->HTR1 = grpp->htr1; adcp->adcm->LTR1 = grpp->ltr2; adcp->adcm->HTR1 = grpp->htr2; adcp->adcm->LTR1 = grpp->ltr3; adcp->adcm->HTR1 = grpp->htr3; adcp->adcm->SMPR1 = grpp->smpr[0]; adcp->adcm->SMPR2 = grpp->smpr[1]; adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2); adcp->adcm->SQR2 = grpp->sqr[1]; adcp->adcm->SQR3 = grpp->sqr[2]; adcp->adcm->SQR4 = grpp->sqr[3]; adcp->adcs->CFGR2 = grpp->cfgr2; adcp->adcs->PCSEL = grpp->spcsel; adcp->adcs->LTR1 = grpp->sltr1; adcp->adcs->HTR1 = grpp->shtr1; adcp->adcs->LTR1 = grpp->sltr2; adcp->adcs->HTR1 = grpp->shtr2; adcp->adcs->LTR1 = grpp->sltr3; adcp->adcs->HTR1 = grpp->shtr3; adcp->adcs->SMPR1 = grpp->ssmpr[0]; adcp->adcs->SMPR2 = grpp->ssmpr[1]; adcp->adcs->SQR1 = grpp->ssqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2); adcp->adcs->SQR2 = grpp->ssqr[1]; adcp->adcs->SQR3 = grpp->ssqr[2]; adcp->adcs->SQR4 = grpp->ssqr[3]; /* ADC configuration.*/ adcp->adcm->CFGR = cfgr; adcp->adcs->CFGR = cfgr; #else /* !STM32_ADC_DUAL_MODE */ adcp->adcm->CFGR2 = grpp->cfgr2; adcp->adcm->PCSEL = grpp->pcsel; adcp->adcm->LTR1 = grpp->ltr1; adcp->adcm->HTR1 = grpp->htr1; adcp->adcm->LTR1 = grpp->ltr2; adcp->adcm->HTR1 = grpp->htr2; adcp->adcm->LTR1 = grpp->ltr3; adcp->adcm->HTR1 = grpp->htr3; adcp->adcm->SMPR1 = grpp->smpr[0]; adcp->adcm->SMPR2 = grpp->smpr[1]; adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels); adcp->adcm->SQR2 = grpp->sqr[1]; adcp->adcm->SQR3 = grpp->sqr[2]; adcp->adcm->SQR4 = grpp->sqr[3]; /* ADC configuration.*/ adcp->adcm->CFGR = cfgr; #endif /* !STM32_ADC_DUAL_MODE */ /* Starting conversion.*/ adcp->adcm->CR |= ADC_CR_ADSTART; } /** * @brief Stops an ongoing conversion. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adc_lld_stop_conversion(ADCDriver *adcp) { dmaStreamDisable(adcp->data.dma); adc_lld_stop_adc(adcp); } /** * @brief Enables the VREFEN bit. * @details The VREFEN bit is required in order to sample the VREF channel. * @note This is an STM32-only functionality. * @note This function is meant to be called after @p adcStart(). * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adcSTM32EnableVREF(ADCDriver *adcp) { adcp->adcc->CCR |= ADC_CCR_VREFEN; } /** * @brief Disables the VREFEN bit. * @details The VREFEN bit is required in order to sample the VREF channel. * @note This is an STM32-only functionality. * @note This function is meant to be called after @p adcStart(). * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adcSTM32DisableVREF(ADCDriver *adcp) { adcp->adcc->CCR &= ~ADC_CCR_VREFEN; } /** * @brief Enables the TSEN bit. * @details The TSEN bit is required in order to sample the internal * temperature sensor and internal reference voltage. * @note This is an STM32-only functionality. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adcSTM32EnableTS(ADCDriver *adcp) { adcp->adcc->CCR |= ADC_CCR_TSEN; } /** * @brief Disables the TSEN bit. * @details The TSEN bit is required in order to sample the internal * temperature sensor and internal reference voltage. * @note This is an STM32-only functionality. * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adcSTM32DisableTS(ADCDriver *adcp) { adcp->adcc->CCR &= ~ADC_CCR_TSEN; } /** * @brief Enables the VBATEN bit. * @details The VBATEN bit is required in order to sample the VBAT channel. * @note This is an STM32-only functionality. * @note This function is meant to be called after @p adcStart(). * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adcSTM32EnableVBAT(ADCDriver *adcp) { adcp->adcc->CCR |= ADC_CCR_VBATEN; } /** * @brief Disables the VBATEN bit. * @details The VBATEN bit is required in order to sample the VBAT channel. * @note This is an STM32-only functionality. * @note This function is meant to be called after @p adcStart(). * * @param[in] adcp pointer to the @p ADCDriver object * * @notapi */ void adcSTM32DisableVBAT(ADCDriver *adcp) { adcp->adcc->CCR &= ~ADC_CCR_VBATEN; } #endif /* HAL_USE_ADC */ /** @} */