/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * @file STM32/uart_lld.c * @brief STM32 low level UART driver code. * * @addtogroup UART * @{ */ #include "ch.h" #include "hal.h" #if HAL_USE_UART || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief USART1 UART driver identifier.*/ #if STM32_UART_USE_USART1 || defined(__DOXYGEN__) UARTDriver UARTD1; #endif /** @brief USART2 UART driver identifier.*/ #if STM32_UART_USE_USART2 || defined(__DOXYGEN__) UARTDriver UARTD2; #endif /** @brief USART3 UART driver identifier.*/ #if STM32_UART_USE_USART3 || defined(__DOXYGEN__) UARTDriver UARTD3; #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Status bits translation. * * @param[in] sr USART SR register value * * @return The error flags. */ static uartflags_t translate_errors(uint16_t sr) { uartflags_t sts = 0; if (sr & USART_SR_ORE) sts |= UART_OVERRUN_ERROR; if (sr & USART_SR_PE) sts |= UART_PARITY_ERROR; if (sr & USART_SR_FE) sts |= UART_FRAMING_ERROR; if (sr & USART_SR_NE) sts |= UART_NOISE_ERROR; if (sr & USART_SR_LBD) sts |= UART_BREAK_DETECTED; return sts; } /** * @brief Puts the receiver in the UART_RX_IDLE state. * * @param[in] uartp pointer to the @p UARTDriver object */ static void set_rx_idle_loop(UARTDriver *uartp) { uint32_t ccr; /* RX DMA channel preparation, if the char callback is defined then the TCIE interrupt is enabled too.*/ if (uartp->ud_config->uc_rxchar == NULL) ccr = DMA_CCR1_CIRC | DMA_CCR1_TEIE; else ccr = DMA_CCR1_CIRC | DMA_CCR1_TEIE | DMA_CCR1_TCIE; dmaSetupChannel(uartp->ud_dmap, uartp->ud_dmarx, 1, &uartp->ud_rxbuf, uartp->ud_dmaccr | ccr); dmaEnableChannel(uartp->ud_dmap, uartp->ud_dmarx); } /** * @brief USART de-initialization. * @details This function must be invoked with interrupts disabled. * * @param[in] uartp pointer to the @p UARTDriver object */ static void usart_stop(UARTDriver *uartp) { /* Stops RX and TX DMA channels.*/ dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmarx); dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmatx); dmaClearChannel(uartp->ud_dmap, uartp->ud_dmarx); dmaClearChannel(uartp->ud_dmap, uartp->ud_dmatx); /* Stops USART operations.*/ uartp->ud_usart->CR1 = 0; uartp->ud_usart->CR2 = 0; uartp->ud_usart->CR3 = 0; } /** * @brief USART initialization. * @details This function must be invoked with interrupts disabled. * * @param[in] uartp pointer to the @p UARTDriver object */ static void usart_start(UARTDriver *uartp) { uint16_t cr1; USART_TypeDef *u = uartp->ud_usart; /* Defensive programming, starting from a clean state.*/ usart_stop(uartp); /* Baud rate setting.*/ if (uartp->ud_usart == USART1) u->BRR = STM32_PCLK2 / uartp->ud_config->uc_speed; else u->BRR = STM32_PCLK1 / uartp->ud_config->uc_speed; /* Resetting eventual pending status flags.*/ (void)u->SR; /* SR reset step 1.*/ (void)u->DR; /* SR reset step 2.*/ u->SR = 0; /* Note that some bits are enforced because required for correct driver operations.*/ if (uartp->ud_config->uc_txend2 == NULL) cr1 = USART_CR1_UE | USART_CR1_PEIE | USART_CR1_TE | USART_CR1_RE; else cr1 = USART_CR1_UE | USART_CR1_PEIE | USART_CR1_TE | USART_CR1_RE | USART_CR1_TCIE; u->CR1 = uartp->ud_config->uc_cr1 | cr1; u->CR2 = uartp->ud_config->uc_cr2 | USART_CR2_LBDIE; u->CR3 = uartp->ud_config->uc_cr3 | USART_CR3_DMAT | USART_CR3_DMAR | USART_CR3_EIE; /* Starting the receiver idle loop.*/ set_rx_idle_loop(uartp); } /** * @brief RX DMA common service routine. * * @param[in] uartp pointer to the @p UARTDriver object */ static void serve_rx_end_irq(UARTDriver *uartp) { uartp->ud_rxstate = UART_RX_COMPLETE; if (uartp->ud_config->uc_rxend != NULL) uartp->ud_config->uc_rxend(uartp); /* If the callback didn't explicitly change state then the receiver automatically returns to the idle state.*/ if (uartp->ud_rxstate == UART_RX_COMPLETE) { uartp->ud_rxstate = UART_RX_IDLE; set_rx_idle_loop(uartp); } } /** * @brief TX DMA common service routine. * * @param[in] uartp pointer to the @p UARTDriver object */ static void serve_tx_end_irq(UARTDriver *uartp) { /* A callback is generated, if enabled, after a completed transfer.*/ uartp->ud_txstate = UART_TX_COMPLETE; if (uartp->ud_config->uc_txend1 != NULL) uartp->ud_config->uc_txend1(uartp); /* If the callback didn't explicitly change state then the transmitter automatically returns to the idle state.*/ if (uartp->ud_txstate == UART_TX_COMPLETE) uartp->ud_txstate = UART_TX_IDLE; } /** * @brief USART common service routine. * * @param[in] uartp pointer to the @p UARTDriver object */ static void serve_usart_irq(UARTDriver *uartp) { uint16_t sr; USART_TypeDef *u = uartp->ud_usart; sr = u->SR; /* SR reset step 1.*/ (void)u->DR; /* SR reset step 2.*/ if (sr & (USART_SR_LBD | USART_SR_ORE | USART_SR_NE | USART_SR_FE | USART_SR_PE)) { u->SR = ~USART_SR_LBD; if (uartp->ud_config->uc_rxerr != NULL) uartp->ud_config->uc_rxerr(uartp, translate_errors(sr)); } if (sr & USART_SR_TC) { u->SR = ~USART_SR_TC; /* End of transmission, a callback is generated.*/ if (uartp->ud_config->uc_txend2 != NULL) uartp->ud_config->uc_txend2(uartp); } } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if STM32_UART_USE_USART1 || defined(__DOXYGEN__) /** * @brief USART1 RX DMA interrupt handler (channel 5). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch5_IRQHandler) { UARTDriver *uartp; CH_IRQ_PROLOGUE(); uartp = &UARTD1; if ((STM32_DMA1->ISR & DMA_ISR_TEIF5) != 0) { STM32_UART_USART1_DMA_ERROR_HOOK(); } if (uartp->ud_rxstate == UART_RX_IDLE) { dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_5); /* Fast IRQ path, this is why it is not centralized in serve_rx_end_irq().*/ /* Receiver in idle state, a callback is generated, if enabled, for each received character and then the driver stays in the same state.*/ if (uartp->ud_config->uc_rxchar != NULL) uartp->ud_config->uc_rxchar(uartp, uartp->ud_rxbuf); } else { /* Receiver in active state, a callback is generated, if enabled, after a completed transfer.*/ dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_5); dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_5); serve_rx_end_irq(uartp); } CH_IRQ_EPILOGUE(); } /** * @brief USART1 TX DMA interrupt handler (channel 4). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch4_IRQHandler) { CH_IRQ_PROLOGUE(); if ((STM32_DMA1->ISR & DMA_ISR_TEIF4) != 0) { STM32_UART_USART1_DMA_ERROR_HOOK(); } dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_4); dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_4); serve_tx_end_irq(&UARTD1); CH_IRQ_EPILOGUE(); } /** * @brief USART1 IRQ handler. * * @isr */ CH_IRQ_HANDLER(USART1_IRQHandler) { CH_IRQ_PROLOGUE(); serve_usart_irq(&UARTD1); CH_IRQ_EPILOGUE(); } #endif /* STM32_UART_USE_USART1 */ #if STM32_UART_USE_USART2 || defined(__DOXYGEN__) /** * @brief USART2 RX DMA interrupt handler (channel 6). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch6_IRQHandler) { UARTDriver *uartp; CH_IRQ_PROLOGUE(); uartp = &UARTD2; if ((STM32_DMA1->ISR & DMA_ISR_TEIF6) != 0) { STM32_UART_USART2_DMA_ERROR_HOOK(); } if (uartp->ud_rxstate == UART_RX_IDLE) { dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_6); /* Fast IRQ path, this is why it is not centralized in serve_rx_end_irq().*/ /* Receiver in idle state, a callback is generated, if enabled, for each received character and then the driver stays in the same state.*/ if (uartp->ud_config->uc_rxchar != NULL) uartp->ud_config->uc_rxchar(uartp, uartp->ud_rxbuf); } else { /* Receiver in active state, a callback is generated, if enabled, after a completed transfer.*/ dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_6); dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_6); serve_rx_end_irq(uartp); } CH_IRQ_EPILOGUE(); } /** * @brief USART2 TX DMA interrupt handler (channel 7). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch7_IRQHandler) { CH_IRQ_PROLOGUE(); if ((STM32_DMA1->ISR & DMA_ISR_TEIF7) != 0) { STM32_UART_USART2_DMA_ERROR_HOOK(); } dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_7); dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_7); serve_tx_end_irq(&UARTD2); CH_IRQ_EPILOGUE(); } /** * @brief USART2 IRQ handler. * * @isr */ CH_IRQ_HANDLER(USART2_IRQHandler) { CH_IRQ_PROLOGUE(); serve_usart_irq(&UARTD2); CH_IRQ_EPILOGUE(); } #endif /* STM32_UART_USE_USART2 */ #if STM32_UART_USE_USART3 || defined(__DOXYGEN__) /** * @brief USART3 RX DMA interrupt handler (channel 3). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch3_IRQHandler) { UARTDriver *uartp; CH_IRQ_PROLOGUE(); uartp = &UARTD3; if ((STM32_DMA1->ISR & DMA_ISR_TEIF3) != 0) { STM32_UART_USART1_DMA_ERROR_HOOK(); } if (uartp->ud_rxstate == UART_RX_IDLE) { dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_3); /* Fast IRQ path, this is why it is not centralized in serve_rx_end_irq().*/ /* Receiver in idle state, a callback is generated, if enabled, for each received character and then the driver stays in the same state.*/ if (uartp->ud_config->uc_rxchar != NULL) uartp->ud_config->uc_rxchar(uartp, uartp->ud_rxbuf); } else { /* Receiver in active state, a callback is generated, if enabled, after a completed transfer.*/ dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_3); dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_3); serve_rx_end_irq(uartp); } CH_IRQ_EPILOGUE(); } /** * @brief USART3 TX DMA interrupt handler (channel 2). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch2_IRQHandler) { CH_IRQ_PROLOGUE(); if ((STM32_DMA1->ISR & DMA_ISR_TEIF2) != 0) { STM32_UART_USART1_DMA_ERROR_HOOK(); } dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_2); dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_2); serve_tx_end_irq(&UARTD3); CH_IRQ_EPILOGUE(); } /** * @brief USART3 IRQ handler. * * @isr */ CH_IRQ_HANDLER(USART3_IRQHandler) { CH_IRQ_PROLOGUE(); serve_usart_irq(&UARTD3); CH_IRQ_EPILOGUE(); } #endif /* STM32_UART_USE_USART3 */ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level UART driver initialization. * * @notapi */ void uart_lld_init(void) { #if STM32_UART_USE_USART1 uartObjectInit(&UARTD1); UARTD1.ud_usart = USART1; UARTD1.ud_dmap = STM32_DMA1; UARTD1.ud_dmarx = STM32_DMA_CHANNEL_5; UARTD1.ud_dmatx = STM32_DMA_CHANNEL_4; UARTD1.ud_dmaccr = 0; #endif #if STM32_UART_USE_USART2 uartObjectInit(&UARTD2); UARTD2.ud_usart = USART2; UARTD2.ud_dmap = STM32_DMA1; UARTD2.ud_dmarx = STM32_DMA_CHANNEL_6; UARTD2.ud_dmatx = STM32_DMA_CHANNEL_7; UARTD2.ud_dmaccr = 0; #endif #if STM32_UART_USE_USART3 uartObjectInit(&UARTD3); UARTD3.ud_usart = USART3; UARTD3.ud_dmap = STM32_DMA1; UARTD3.ud_dmarx = STM32_DMA_CHANNEL_3; UARTD3.ud_dmatx = STM32_DMA_CHANNEL_2; UARTD3.ud_dmaccr = 0; #endif } /** * @brief Configures and activates the UART peripheral. * * @param[in] uartp pointer to the @p UARTDriver object * * @notapi */ void uart_lld_start(UARTDriver *uartp) { if (uartp->ud_state == UART_STOP) { #if STM32_UART_USE_USART1 if (&UARTD1 == uartp) { dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/ NVICEnableVector(USART1_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART1_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel4_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART1_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel5_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART1_IRQ_PRIORITY)); RCC->APB2ENR |= RCC_APB2ENR_USART1EN; } #endif #if STM32_UART_USE_USART2 if (&UARTD2 == uartp) { dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/ NVICEnableVector(USART2_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART2_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel6_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART2_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel7_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART2_IRQ_PRIORITY)); RCC->APB1ENR |= RCC_APB1ENR_USART2EN; } #endif #if STM32_UART_USE_USART3 if (&UARTD3 == uartp) { dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/ NVICEnableVector(USART3_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART3_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel2_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART3_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel3_IRQn, CORTEX_PRIORITY_MASK(STM32_UART_USART3_IRQ_PRIORITY)); RCC->APB1ENR |= RCC_APB1ENR_USART3EN; } #endif /* Static DMA setup, the transfer size depends on the USART settings, it is 16 bits if M=1 and PCE=0 else it is 8 bits.*/ uartp->ud_dmaccr = STM32_UART_USART1_DMA_PRIORITY << 12; if ((uartp->ud_config->uc_cr1 & (USART_CR1_M | USART_CR1_PCE)) == USART_CR1_M) uartp->ud_dmaccr |= DMA_CCR1_MSIZE_0 | DMA_CCR1_PSIZE_0; dmaChannelSetPeripheral(&uartp->ud_dmap->channels[uartp->ud_dmarx], &uartp->ud_usart->DR); dmaChannelSetPeripheral(&uartp->ud_dmap->channels[uartp->ud_dmatx], &uartp->ud_usart->DR); uartp->ud_rxbuf = 0; } uartp->ud_rxstate = UART_RX_IDLE; uartp->ud_txstate = UART_TX_IDLE; usart_start(uartp); } /** * @brief Deactivates the UART peripheral. * * @param[in] uartp pointer to the @p UARTDriver object * * @notapi */ void uart_lld_stop(UARTDriver *uartp) { if (uartp->ud_state == UART_READY) { usart_stop(uartp); #if STM32_UART_USE_USART1 if (&UARTD1 == uartp) { NVICDisableVector(USART1_IRQn); NVICDisableVector(DMA1_Channel4_IRQn); NVICDisableVector(DMA1_Channel5_IRQn); dmaDisable(DMA1_ID); RCC->APB2ENR &= ~RCC_APB2ENR_USART1EN; return; } #endif #if STM32_UART_USE_USART2 if (&UARTD2 == uartp) { NVICDisableVector(USART2_IRQn); NVICDisableVector(DMA1_Channel6_IRQn); NVICDisableVector(DMA1_Channel7_IRQn); dmaDisable(DMA1_ID); RCC->APB1ENR &= ~RCC_APB1ENR_USART2EN; return; } #endif #if STM32_UART_USE_USART3 if (&UARTD3 == uartp) { NVICDisableVector(USART3_IRQn); NVICDisableVector(DMA1_Channel2_IRQn); NVICDisableVector(DMA1_Channel3_IRQn); dmaDisable(DMA1_ID); RCC->APB1ENR &= ~RCC_APB1ENR_USART3EN; return; } #endif } } /** * @brief Starts a transmission on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[in] txbuf the pointer to the transmit buffer * * @notapi */ void uart_lld_start_send(UARTDriver *uartp, size_t n, const void *txbuf) { /* TX DMA channel preparation and start.*/ dmaSetupChannel(uartp->ud_dmap, uartp->ud_dmatx, n, txbuf, uartp->ud_dmaccr | DMA_CCR1_DIR | DMA_CCR1_MINC | DMA_CCR1_TEIE | DMA_CCR1_TCIE); dmaEnableChannel(uartp->ud_dmap, uartp->ud_dmatx); } /** * @brief Stops any ongoing transmission. * @note Stopping a transmission also suppresses the transmission callbacks. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not transmitted by the * stopped transmit operation. * * @notapi */ size_t uart_lld_stop_send(UARTDriver *uartp) { dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmatx); dmaClearChannel(uartp->ud_dmap, uartp->ud_dmatx); return (size_t)uartp->ud_dmap->channels[uartp->ud_dmatx].CNDTR; } /** * @brief Starts a receive operation on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void uart_lld_start_receive(UARTDriver *uartp, size_t n, void *rxbuf) { /* Stopping previous activity (idle state).*/ dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmarx); dmaClearChannel(uartp->ud_dmap, uartp->ud_dmarx); /* RX DMA channel preparation and start.*/ dmaSetupChannel(uartp->ud_dmap, uartp->ud_dmarx, n, rxbuf, uartp->ud_dmaccr | DMA_CCR1_MINC | DMA_CCR1_TEIE | DMA_CCR1_TCIE); dmaEnableChannel(uartp->ud_dmap, uartp->ud_dmarx); } /** * @brief Stops any ongoing receive operation. * @note Stopping a receive operation also suppresses the receive callbacks. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not received by the * stopped receive operation. * * @notapi */ size_t uart_lld_stop_receive(UARTDriver *uartp) { size_t n; dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmarx); dmaClearChannel(uartp->ud_dmap, uartp->ud_dmarx); n = (size_t)uartp->ud_dmap->channels[uartp->ud_dmarx].CNDTR; set_rx_idle_loop(uartp); return n; } #endif /* HAL_USE_UART */ /** @} */