/* ChibiOS - Copyright (C) 2016 Rocco Marco Guglielmi This file is part of ChibiOS. ChibiOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * @file lsm303dlhc.c * @brief LSM303DLHC MEMS interface module code. * * @addtogroup LSM303DLHC * @ingroup EX_ST * @{ */ #include "hal.h" #include "lsm303dlhc.h" /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local variables and types. */ /*===========================================================================*/ /** * @brief Accelerometer and Compass Slave Address. */ typedef enum { LSM303DLHC_SAD_ACC = 0x19, /**< SAD for accelerometer. */ LSM303DLHC_SAD_COMP = 0x1E /**< SAD for compass. */ } lsm303dlhc_sad_t; /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Reads registers value using I2C. * @pre The I2C interface must be initialized and the driver started. * @note IF_ADD_INC bit must be 1 in CTRL_REG8 * * @param[in] i2cp pointer to the I2C interface * @param[in] sad slave address without R bit * @param[in] reg first sub-register address * @param[in] rxbuf receiving buffer * @param[in] n size of rxbuf * @return the operation status. */ msg_t lsm303dlhcI2CReadRegister(I2CDriver *i2cp, lsm303dlhc_sad_t sad, uint8_t reg, uint8_t *rxbuf, size_t n) { uint8_t txbuf = reg | LSM303DLHC_MS; return i2cMasterTransmitTimeout(i2cp, sad, &txbuf, 1, rxbuf, n, TIME_INFINITE); } /** * @brief Writes a value into a register using I2C. * @pre The I2C interface must be initialized and the driver started. * * @param[in] i2cp pointer to the I2C interface * @param[in] sad slave address without R bit * @param[in] txbuf buffer containing sub-address value in first position * and values to write * @param[in] n size of txbuf less one (not considering the first * element) * @return the operation status. */ msg_t lsm303dlhcI2CWriteRegister(I2CDriver *i2cp, lsm303dlhc_sad_t sad, uint8_t *txbuf, size_t n) { if (n != 1) *txbuf |= LSM303DLHC_MS; return i2cMasterTransmitTimeout(i2cp, sad, txbuf, n + 1, NULL, 0, TIME_INFINITE); } /* * Interface implementation. */ static size_t acc_get_axes_number(void *ip) { osalDbgCheck(ip != NULL); return LSM303DLHC_ACC_NUMBER_OF_AXES; } static size_t comp_get_axes_number(void *ip) { osalDbgCheck(ip != NULL); return LSM303DLHC_COMP_NUMBER_OF_AXES; } static size_t sens_get_axes_number(void *ip) { size_t size = 0; osalDbgCheck(ip != NULL); if (((LSM303DLHCDriver *)ip)->config->acccfg != NULL) size += acc_get_axes_number(ip); if (((LSM303DLHCDriver *)ip)->config->compcfg != NULL) size += comp_get_axes_number(ip); return size; } static msg_t acc_read_raw(void *ip, int32_t axes[]) { uint8_t buff [LSM303DLHC_ACC_NUMBER_OF_AXES * 2], i; int16_t tmp; msg_t msg; osalDbgCheck(((ip != NULL) && (axes != NULL)) && (((LSM303DLHCDriver *)ip)->config->acccfg != NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "acc_read_raw(), invalid state"); osalDbgAssert((((LSM303DLHCDriver *)ip)->config->i2cp->state == I2C_READY), "acc_read_raw(), channel not ready"); #if LSM303DLHC_SHARED_I2C i2cAcquireBus(((LSM303DLHCDriver *)ip)->config->i2cp); i2cStart(((LSM303DLHCDriver *)ip)->config->i2cp, ((LSM303DLHCDriver *)ip)->config->i2ccfg); #endif /* LSM303DLHC_SHARED_I2C */ msg = lsm303dlhcI2CReadRegister(((LSM303DLHCDriver *)ip)->config->i2cp, LSM303DLHC_SAD_ACC, LSM303DLHC_AD_ACC_OUT_X_L, buff, LSM303DLHC_ACC_NUMBER_OF_AXES * 2); #if LSM303DLHC_SHARED_I2C i2cReleaseBus(((LSM303DLHCDriver *)ip)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ if(msg == MSG_OK) for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { tmp = buff[2*i] + (buff[2*i+1] << 8); axes[i] = (int32_t)tmp; } return msg; } static msg_t comp_read_raw(void *ip, int32_t axes[]) { uint8_t buff [LSM303DLHC_COMP_NUMBER_OF_AXES * 2], i; int16_t tmp; msg_t msg; osalDbgCheck(((ip != NULL) && (axes != NULL)) && (((LSM303DLHCDriver *)ip)->config->compcfg != NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "comp_read_raw(), invalid state"); osalDbgAssert((((LSM303DLHCDriver *)ip)->config->i2cp->state == I2C_READY), "comp_read_raw(), channel not ready"); #if LSM303DLHC_SHARED_I2C i2cAcquireBus(((LSM303DLHCDriver *)ip)->config->i2cp); i2cStart(((LSM303DLHCDriver *)ip)->config->i2cp, ((LSM303DLHCDriver *)ip)->config->i2ccfg); #endif /* LSM303DLHC_SHARED_I2C */ msg = lsm303dlhcI2CReadRegister(((LSM303DLHCDriver *)ip)->config->i2cp, LSM303DLHC_SAD_COMP, LSM303DLHC_AD_COMP_OUT_X_L, buff, LSM303DLHC_COMP_NUMBER_OF_AXES * 2); #if LSM303DLHC_SHARED_I2C i2cReleaseBus(((LSM303DLHCDriver *)ip)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ if(msg == MSG_OK) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { tmp = buff[2*i] + (buff[2*i+1] << 8); axes[i] = (int32_t)tmp; } return msg; } static msg_t sens_read_raw(void *ip, int32_t axes[]) { int32_t* bp = axes; msg_t msg; if (((LSM303DLHCDriver *)ip)->config->acccfg != NULL) { msg = acc_read_raw(ip, bp); if(msg != MSG_OK) return msg; bp += LSM303DLHC_ACC_NUMBER_OF_AXES; } if (((LSM303DLHCDriver *)ip)->config->compcfg != NULL) { msg = comp_read_raw(ip, bp); } return msg; } static msg_t acc_read_cooked(void *ip, float axes[]) { uint32_t i; int32_t raw[LSM303DLHC_ACC_NUMBER_OF_AXES]; msg_t msg; osalDbgCheck(((ip != NULL) && (axes != NULL)) && (((LSM303DLHCDriver *)ip)->config->acccfg != NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "acc_read_cooked(), invalid state"); msg = acc_read_raw(ip, raw); for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES ; i++) { axes[i] = raw[i] * ((LSM303DLHCDriver *)ip)->accsensitivity[i]; axes[i] -= ((LSM303DLHCDriver *)ip)->accbias[i]; } return msg; } static msg_t comp_read_cooked(void *ip, float axes[]) { uint32_t i; int32_t raw[LSM303DLHC_COMP_NUMBER_OF_AXES]; msg_t msg; osalDbgCheck(((ip != NULL) && (axes != NULL)) && (((LSM303DLHCDriver *)ip)->config->compcfg != NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "comp_read_cooked(), invalid state"); msg = comp_read_raw(ip, raw); for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES ; i++) { axes[i] = raw[i] * ((LSM303DLHCDriver *)ip)->compsensitivity[i]; axes[i] -= ((LSM303DLHCDriver *)ip)->compbias[i]; } return msg; } static msg_t sens_read_cooked(void *ip, float axes[]) { float* bp = axes; msg_t msg; if (((LSM303DLHCDriver *)ip)->config->acccfg != NULL) { msg = acc_read_cooked(ip, bp); if(msg != MSG_OK) return msg; bp += LSM303DLHC_ACC_NUMBER_OF_AXES; } if (((LSM303DLHCDriver *)ip)->config->compcfg != NULL) { msg = comp_read_cooked(ip, bp); } return msg; } static msg_t acc_set_bias(void *ip, float *bp) { uint32_t i; osalDbgCheck((ip != NULL) && (bp !=NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY) || (((LSM303DLHCDriver *)ip)->state == LSM303DLHC_STOP), "acc_set_bias(), invalid state"); for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { ((LSM303DLHCDriver *)ip)->accbias[i] = bp[i]; } return MSG_OK; } static msg_t comp_set_bias(void *ip, float *bp) { uint32_t i; osalDbgCheck((ip != NULL) && (bp !=NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY) || (((LSM303DLHCDriver *)ip)->state == LSM303DLHC_STOP), "comp_set_bias(), invalid state"); for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { ((LSM303DLHCDriver *)ip)->compbias[i] = bp[i]; } return MSG_OK; } static msg_t acc_reset_bias(void *ip) { uint32_t i; osalDbgCheck(ip != NULL); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY) || (((LSM303DLHCDriver *)ip)->state == LSM303DLHC_STOP), "acc_reset_bias(), invalid state"); for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) ((LSM303DLHCDriver *)ip)->accbias[i] = 0; return MSG_OK; } static msg_t comp_reset_bias(void *ip) { uint32_t i; osalDbgCheck(ip != NULL); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY) || (((LSM303DLHCDriver *)ip)->state == LSM303DLHC_STOP), "comp_reset_bias(), invalid state"); for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) ((LSM303DLHCDriver *)ip)->compbias[i] = 0; return MSG_OK; } static msg_t acc_set_sensivity(void *ip, float *sp) { uint32_t i; osalDbgCheck((ip != NULL) && (sp !=NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "acc_set_sensivity(), invalid state"); for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { ((LSM303DLHCDriver *)ip)->accsensitivity[i] = sp[i]; } return MSG_OK; } static msg_t comp_set_sensivity(void *ip, float *sp) { uint32_t i; osalDbgCheck((ip != NULL) && (sp !=NULL)); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "comp_set_sensivity(), invalid state"); for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = sp[i]; } return MSG_OK; } static msg_t acc_reset_sensivity(void *ip) { uint32_t i; msg_t msg = MSG_OK; osalDbgCheck(ip != NULL); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "acc_reset_sensivity(), invalid state"); if(((LSM303DLHCDriver *)ip)->config->acccfg->fullscale == LSM303DLHC_ACC_FS_2G) for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) ((LSM303DLHCDriver *)ip)->accsensitivity[i] = LSM303DLHC_ACC_SENS_2G; else if(((LSM303DLHCDriver *)ip)->config->acccfg->fullscale == LSM303DLHC_ACC_FS_4G) for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) ((LSM303DLHCDriver *)ip)->accsensitivity[i] = LSM303DLHC_ACC_SENS_4G; else if(((LSM303DLHCDriver *)ip)->config->acccfg->fullscale == LSM303DLHC_ACC_FS_8G) for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) ((LSM303DLHCDriver *)ip)->accsensitivity[i] = LSM303DLHC_ACC_SENS_8G; else if(((LSM303DLHCDriver *)ip)->config->acccfg->fullscale == LSM303DLHC_ACC_FS_16G) for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) ((LSM303DLHCDriver *)ip)->accsensitivity[i] = LSM303DLHC_ACC_SENS_16G; else { osalDbgAssert(FALSE, "reset_sensivity(), accelerometer full scale issue"); msg = MSG_RESET; } return msg; } static msg_t comp_reset_sensivity(void *ip) { uint32_t i; msg_t msg = MSG_OK; osalDbgCheck(ip != NULL); osalDbgAssert((((LSM303DLHCDriver *)ip)->state == LSM303DLHC_READY), "comp_reset_sensivity(), invalid state"); if(((LSM303DLHCDriver *)ip)->config->compcfg->fullscale == LSM303DLHC_COMP_FS_1P3GA) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(i != 2) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_1P3GA; } else { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_1P3GA; } } else if(((LSM303DLHCDriver *)ip)->config->compcfg->fullscale == LSM303DLHC_COMP_FS_1P9GA) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(i != 2) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_1P9GA; } else { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_1P9GA; } } else if(((LSM303DLHCDriver *)ip)->config->compcfg->fullscale == LSM303DLHC_COMP_FS_2P5GA) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(i != 2) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_2P5GA; } else { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_2P5GA; } } else if(((LSM303DLHCDriver *)ip)->config->compcfg->fullscale == LSM303DLHC_COMP_FS_4P0GA) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(i != 2) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_4P0GA; } else { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_4P0GA; } } else if(((LSM303DLHCDriver *)ip)->config->compcfg->fullscale == LSM303DLHC_COMP_FS_4P7GA) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(i != 2) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_4P7GA; } else { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_4P7GA; } } else if(((LSM303DLHCDriver *)ip)->config->compcfg->fullscale == LSM303DLHC_COMP_FS_5P6GA) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(i != 2) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_5P6GA; } else { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_5P6GA; } } else if(((LSM303DLHCDriver *)ip)->config->compcfg->fullscale == LSM303DLHC_COMP_FS_8P1GA) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(i != 2) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_8P1GA; } else { ((LSM303DLHCDriver *)ip)->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_8P1GA; } } else { osalDbgAssert(FALSE, "reset_sensivity(), compass full scale issue"); msg = MSG_RESET; } return msg; } static msg_t acc_set_full_scale(void *ip, lsm303dlhc_acc_fs_t fs) { float newfs, scale; uint8_t i, buff[2]; msg_t msg; if(fs == LSM303DLHC_ACC_FS_2G) { newfs = LSM303DLHC_ACC_2G; } else if(fs == LSM303DLHC_ACC_FS_4G) { newfs = LSM303DLHC_ACC_4G; } else if(fs == LSM303DLHC_ACC_FS_8G) { newfs = LSM303DLHC_ACC_8G; } else if(fs == LSM303DLHC_ACC_FS_16G) { newfs = LSM303DLHC_ACC_16G; } else { msg = MSG_RESET; return msg; } if(newfs != ((LSM303DLHCDriver *)ip)->accfullscale) { scale = newfs / ((LSM303DLHCDriver *)ip)->accfullscale; ((LSM303DLHCDriver *)ip)->accfullscale = newfs; #if LSM303DLHC_SHARED_I2C i2cAcquireBus(((LSM303DLHCDriver *)ip)->config->i2cp); i2cStart(((LSM303DLHCDriver *)ip)->config->i2cp, ((LSM303DLHCDriver *)ip)->config->i2ccfg); #endif /* LSM303DLHC_SHARED_I2C */ /* Updating register.*/ msg = lsm303dlhcI2CReadRegister(((LSM303DLHCDriver *)ip)->config->i2cp, LSM303DLHC_SAD_ACC, LSM303DLHC_AD_ACC_CTRL_REG4, &buff[1], 1); #if LSM303DLHC_SHARED_I2C i2cReleaseBus(((LSM303DLHCDriver *)ip)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ if(msg != MSG_OK) return msg; buff[1] &= ~(LSM303DLHC_CTRL_REG4_A_FS_MASK); buff[1] |= fs; buff[0] = LSM303DLHC_AD_ACC_CTRL_REG4; #if LSM303DLHC_SHARED_I2C i2cAcquireBus(((LSM303DLHCDriver *)ip)->config->i2cp); i2cStart(((LSM303DLHCDriver *)ip)->config->i2cp, ((LSM303DLHCDriver *)ip)->config->i2ccfg); #endif /* LSM303DLHC_SHARED_I2C */ msg = lsm303dlhcI2CWriteRegister(((LSM303DLHCDriver *)ip)->config->i2cp, LSM303DLHC_SAD_ACC, buff, 1); #if LSM303DLHC_SHARED_I2C i2cReleaseBus(((LSM303DLHCDriver *)ip)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ if(msg != MSG_OK) return msg; /* Scaling sensitivity and bias. Re-calibration is suggested anyway. */ for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { ((LSM303DLHCDriver *)ip)->accsensitivity[i] *= scale; ((LSM303DLHCDriver *)ip)->accbias[i] *= scale; } } return msg; } static msg_t comp_set_full_scale(void *ip, lsm303dlhc_comp_fs_t fs) { float newfs, scale; uint8_t i, buff[2]; msg_t msg; if(fs == LSM303DLHC_COMP_FS_1P3GA) { newfs = LSM303DLHC_COMP_1P3GA; } else if(fs == LSM303DLHC_COMP_FS_1P9GA) { newfs = LSM303DLHC_COMP_1P9GA; } else if(fs == LSM303DLHC_COMP_FS_2P5GA) { newfs = LSM303DLHC_COMP_2P5GA; } else if(fs == LSM303DLHC_COMP_FS_4P0GA) { newfs = LSM303DLHC_COMP_4P0GA; } else if(fs == LSM303DLHC_COMP_FS_4P7GA) { newfs = LSM303DLHC_COMP_4P7GA; } else if(fs == LSM303DLHC_COMP_FS_5P6GA) { newfs = LSM303DLHC_COMP_5P6GA; } else if(fs == LSM303DLHC_COMP_FS_8P1GA) { newfs = LSM303DLHC_COMP_8P1GA; } else { msg = MSG_RESET; return msg; } if(newfs != ((LSM303DLHCDriver *)ip)->compfullscale) { scale = newfs / ((LSM303DLHCDriver *)ip)->compfullscale; ((LSM303DLHCDriver *)ip)->compfullscale = newfs; #if LSM303DLHC_SHARED_I2C i2cAcquireBus(((LSM303DLHCDriver *)ip)->config->i2cp); i2cStart(((LSM303DLHCDriver *)ip)->config->i2cp, ((LSM303DLHCDriver *)ip)->config->i2ccfg); #endif /* LSM303DLHC_SHARED_I2C */ /* Updating register.*/ msg = lsm303dlhcI2CReadRegister(((LSM303DLHCDriver *)ip)->config->i2cp, LSM303DLHC_SAD_COMP, LSM303DLHC_AD_COMP_CRB_REG, &buff[1], 1); #if LSM303DLHC_SHARED_I2C i2cReleaseBus(((LSM303DLHCDriver *)ip)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ if(msg != MSG_OK) return msg; buff[1] &= ~(LSM303DLHC_CRB_REG_M_GN_MASK); buff[1] |= fs; buff[0] = LSM303DLHC_AD_COMP_CRB_REG; #if LSM303DLHC_SHARED_I2C i2cAcquireBus(((LSM303DLHCDriver *)ip)->config->i2cp); i2cStart(((LSM303DLHCDriver *)ip)->config->i2cp, ((LSM303DLHCDriver *)ip)->config->i2ccfg); #endif /* LSM303DLHC_SHARED_I2C */ msg = lsm303dlhcI2CWriteRegister(((LSM303DLHCDriver *)ip)->config->i2cp, LSM303DLHC_SAD_COMP, buff, 1); #if LSM303DLHC_SHARED_I2C i2cReleaseBus(((LSM303DLHCDriver *)ip)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ if(msg != MSG_OK) return msg; /* Scaling sensitivity and bias. Re-calibration is suggested anyway. */ for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { ((LSM303DLHCDriver *)ip)->compsensitivity[i] *= scale; ((LSM303DLHCDriver *)ip)->compbias[i] *= scale; } } return msg; } static const struct BaseSensorVMT vmt_basesensor = { sens_get_axes_number, sens_read_raw, sens_read_cooked }; static const struct BaseCompassVMT vmt_basecompass = { comp_get_axes_number, comp_read_raw, comp_read_cooked, comp_set_bias, comp_reset_bias, comp_set_sensivity, comp_reset_sensivity }; static const struct BaseAccelerometerVMT vmt_baseaccelerometer = { acc_get_axes_number, acc_read_raw, acc_read_cooked, acc_set_bias, acc_reset_bias, acc_set_sensivity, acc_reset_sensivity }; static const struct LSM303DLHCACCVMT vmt_lsm303dlhcacc = { acc_get_axes_number, acc_read_raw, acc_read_cooked, acc_set_bias, acc_reset_bias, acc_set_sensivity, acc_reset_sensivity, acc_set_full_scale }; static const struct LSM303DLHCCOMPVMT vmt_lsm303dlhccomp = { comp_get_axes_number, comp_read_raw, comp_read_cooked, comp_set_bias, comp_reset_bias, comp_set_sensivity, comp_reset_sensivity, comp_set_full_scale }; /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Initializes an instance. * * @param[out] devp pointer to the @p LSM303DLHCDriver object * * @init */ void lsm303dlhcObjectInit(LSM303DLHCDriver *devp) { uint32_t i; devp->vmt_basesensor = &vmt_basesensor; devp->vmt_baseaccelerometer = &vmt_baseaccelerometer; devp->vmt_basecompass = &vmt_basecompass; devp->vmt_lsm303dlhcacc = &vmt_lsm303dlhcacc; devp->vmt_lsm303dlhccomp = &vmt_lsm303dlhccomp; devp->config = NULL; for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) devp->accbias[i] = 0.0f; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) devp->compbias[i] = 0.0f; devp->state = LSM303DLHC_STOP; } /** * @brief Configures and activates LSM303DLHC Complex Driver peripheral. * * @param[in] devp pointer to the @p LSM303DLHCDriver object * @param[in] config pointer to the @p LSM303DLHCConfig object * * @api */ void lsm303dlhcStart(LSM303DLHCDriver *devp, const LSM303DLHCConfig *config) { uint32_t i; uint8_t cr[6]; osalDbgCheck((devp != NULL) && (config != NULL)); osalDbgAssert((devp->state == LSM303DLHC_STOP) || (devp->state == LSM303DLHC_READY), "lsm303dlhcStart(), invalid state"); devp->config = config; #if LSM303DLHC_SHARED_I2C i2cAcquireBus((devp)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ i2cStart((devp)->config->i2cp, (devp)->config->i2ccfg); /* Configuring Accelerometer subsystem */ if((devp)->config->acccfg != NULL) { /* Multiple write starting address.*/ cr[0] = LSM303DLHC_AD_ACC_CTRL_REG1; /* Control register 1 configuration block.*/ { cr[1] = LSM303DLHC_CTRL_REG1_A_XEN | LSM303DLHC_CTRL_REG1_A_YEN | LSM303DLHC_CTRL_REG1_A_ZEN | devp->config->acccfg->outdatarate; #if LSM303DLHC_ACC_USE_ADVANCED || defined(__DOXYGEN__) cr[1] |= devp->config->acccfg->lowpower; #endif } /* Control register 2 configuration block.*/ { cr[2] = 0; } /* Control register 3 configuration block.*/ { cr[3] = 0; } /* Control register 4 configuration block.*/ { cr[4] = devp->config->acccfg->fullscale; #if LSM303DLHC_ACC_USE_ADVANCED || defined(__DOXYGEN__) cr[4] |= devp->config->acccfg->endianess | devp->config->acccfg->blockdataupdate | devp->config->acccfg->highresmode; #endif } lsm303dlhcI2CWriteRegister(devp->config->i2cp, LSM303DLHC_SAD_ACC, cr, 4); /* Storing sensitivity according to user settings */ if(devp->config->acccfg->fullscale == LSM303DLHC_ACC_FS_2G) { devp->accfullscale = LSM303DLHC_ACC_2G; for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { if(devp->config->acccfg->sensitivity == NULL) devp->accsensitivity[i] = LSM303DLHC_ACC_SENS_2G; else devp->accsensitivity[i] = devp->config->acccfg->sensitivity[i]; } } else if(devp->config->acccfg->fullscale == LSM303DLHC_ACC_FS_4G) { devp->accfullscale = LSM303DLHC_ACC_4G; for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { if(devp->config->acccfg->sensitivity == NULL) devp->accsensitivity[i] = LSM303DLHC_ACC_SENS_4G; else devp->accsensitivity[i] = devp->config->acccfg->sensitivity[i]; } } else if(devp->config->acccfg->fullscale == LSM303DLHC_ACC_FS_8G) { devp->accfullscale = LSM303DLHC_ACC_8G; for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { if(devp->config->acccfg->sensitivity == NULL) devp->accsensitivity[i] = LSM303DLHC_ACC_SENS_8G; else devp->accsensitivity[i] = devp->config->acccfg->sensitivity[i]; } } else if(devp->config->acccfg->fullscale == LSM303DLHC_ACC_FS_16G) { devp->accfullscale = LSM303DLHC_ACC_16G; for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) { if(devp->config->acccfg->sensitivity == NULL) devp->accsensitivity[i] = LSM303DLHC_ACC_SENS_16G; else devp->accsensitivity[i] = devp->config->acccfg->sensitivity[i]; } } else osalDbgAssert(FALSE, "lsm303dlhcStart(), accelerometer full scale issue"); /* Storing bias information */ if(devp->config->acccfg->bias != NULL) for(i = 0; i < LSM303DLHC_ACC_NUMBER_OF_AXES; i++) devp->accbias[i] = devp->config->acccfg->bias[i]; } /* Configuring Compass subsystem */ if((devp)->config->compcfg != NULL) { /* Multiple write starting address.*/ cr[0] = LSM303DLHC_AD_COMP_CRA_REG; /* Control register A configuration block.*/ { cr[1] = devp->config->compcfg->outputdatarate; } /* Control register B configuration block.*/ { cr[2] = devp->config->compcfg->fullscale; } /* Mode register configuration block.*/ { cr[3] = 0; #if LSM303DLHC_COMP_USE_ADVANCED || defined(__DOXYGEN__) cr[3] |= devp->config->compcfg->mode; #endif } lsm303dlhcI2CWriteRegister(devp->config->i2cp, LSM303DLHC_SAD_COMP, cr, 3); if(devp->config->compcfg->fullscale == LSM303DLHC_COMP_FS_1P3GA) { devp->compfullscale = LSM303DLHC_COMP_1P3GA; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(devp->config->compcfg->sensitivity == NULL) { if(i != 2) { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_1P3GA; } else { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_1P3GA; } } else { devp->compsensitivity[i] = devp->config->compcfg->sensitivity[i]; } } } else if(devp->config->compcfg->fullscale == LSM303DLHC_COMP_FS_1P9GA) { devp->compfullscale = LSM303DLHC_COMP_1P9GA; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(devp->config->compcfg->sensitivity == NULL) { if(i != 2) { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_1P9GA; } else { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_1P9GA; } } else { devp->compsensitivity[i] = devp->config->compcfg->sensitivity[i]; } } } else if(devp->config->compcfg->fullscale == LSM303DLHC_COMP_FS_2P5GA) { devp->compfullscale = LSM303DLHC_COMP_2P5GA; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(devp->config->compcfg->sensitivity == NULL) { if(i != 2) { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_2P5GA; } else { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_2P5GA; } } else { devp->compsensitivity[i] = devp->config->compcfg->sensitivity[i]; } } } else if(devp->config->compcfg->fullscale == LSM303DLHC_COMP_FS_4P0GA) { devp->compfullscale = LSM303DLHC_COMP_4P0GA; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(devp->config->compcfg->sensitivity == NULL) { if(i != 2) { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_4P0GA; } else { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_4P0GA; } } else { devp->compsensitivity[i] = devp->config->compcfg->sensitivity[i]; } } } else if(devp->config->compcfg->fullscale == LSM303DLHC_COMP_FS_4P7GA) { devp->compfullscale = LSM303DLHC_COMP_4P7GA; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(devp->config->compcfg->sensitivity == NULL) { if(i != 2) { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_4P7GA; } else { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_4P7GA; } } else { devp->compsensitivity[i] = devp->config->compcfg->sensitivity[i]; } } } else if(devp->config->compcfg->fullscale == LSM303DLHC_COMP_FS_5P6GA) { devp->compfullscale = LSM303DLHC_COMP_5P6GA; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(devp->config->compcfg->sensitivity == NULL) { if(i != 2) { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_5P6GA; } else { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_5P6GA; } } else { devp->compsensitivity[i] = devp->config->compcfg->sensitivity[i]; } } } else if(devp->config->compcfg->fullscale == LSM303DLHC_COMP_FS_8P1GA) { devp->compfullscale = LSM303DLHC_COMP_8P1GA; for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) { if(devp->config->compcfg->sensitivity == NULL) { if(i != 2) { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_XY_8P1GA; } else { devp->compsensitivity[i] = LSM303DLHC_COMP_SENS_Z_8P1GA; } } else { devp->compsensitivity[i] = devp->config->compcfg->sensitivity[i]; } } } else osalDbgAssert(FALSE, "lsm303dlhcStart(), compass full scale issue"); /* Storing bias information */ if(devp->config->compcfg->bias != NULL) for(i = 0; i < LSM303DLHC_COMP_NUMBER_OF_AXES; i++) devp->compbias[i] = devp->config->compcfg->bias[i]; } /* This is the MEMS transient recovery time */ osalThreadSleepMilliseconds(5); devp->state = LSM303DLHC_READY; #if LSM303DLHC_SHARED_I2C i2cReleaseBus((devp)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ } /** * @brief Deactivates the LSM303DLHC Complex Driver peripheral. * * @param[in] devp pointer to the @p LSM303DLHCDriver object * * @api */ void lsm303dlhcStop(LSM303DLHCDriver *devp) { uint8_t cr[2]; osalDbgCheck(devp != NULL); osalDbgAssert((devp->state == LSM303DLHC_STOP) || (devp->state == LSM303DLHC_READY), "lsm303dlhcStop(), invalid state"); if (devp->state == LSM303DLHC_READY) { #if LSM303DLHC_SHARED_I2C i2cAcquireBus((devp)->config->i2cp); i2cStart((devp)->config->i2cp, (devp)->config->i2ccfg); #endif /* LSM303DLHC_SHARED_I2C */ if((devp)->config->acccfg != NULL) { cr[0] = LSM303DLHC_AD_ACC_CTRL_REG1; cr[1] = LSM303DLHC_ACC_AE_DISABLED | LSM303DLHC_ACC_ODR_PD; lsm303dlhcI2CWriteRegister(devp->config->i2cp, LSM303DLHC_SAD_ACC, cr, 1); } if((devp)->config->compcfg != NULL) { cr[0] = LSM303DLHC_AD_COMP_MR_REG; cr[1] = LSM303DLHC_COMP_MD_SLEEP; lsm303dlhcI2CWriteRegister(devp->config->i2cp, LSM303DLHC_SAD_ACC, cr, 1); lsm303dlhcI2CWriteRegister(devp->config->i2cp, LSM303DLHC_SAD_COMP, cr, 1); } i2cStop((devp)->config->i2cp); #if LSM303DLHC_SHARED_I2C i2cReleaseBus((devp)->config->i2cp); #endif /* LSM303DLHC_SHARED_I2C */ } devp->state = LSM303DLHC_STOP; } /** @} */