/* ChibiOS - Copyright (C) 2006..2018 Giovanni Di Sirio. This file is part of ChibiOS. ChibiOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * @file chheap.c * @brief Heaps code. * * @addtogroup heaps * @details Heap Allocator related APIs. *

Operation mode

* The heap allocator implements a first-fit strategy and its APIs * are functionally equivalent to the usual @p malloc() and @p free() * library functions. The main difference is that the OS heap APIs * are guaranteed to be thread safe and there is the ability to * return memory blocks aligned to arbitrary powers of two.
* @pre In order to use the heap APIs the @p CH_CFG_USE_HEAP option must * be enabled in @p chconf.h. * @note Compatible with RT and NIL. * @{ */ #include "ch.h" #if (CH_CFG_USE_HEAP == TRUE) || defined(__DOXYGEN__) /*===========================================================================*/ /* Module local definitions. */ /*===========================================================================*/ /* * Defaults on the best synchronization mechanism available. */ #if (CH_CFG_USE_MUTEXES == TRUE) || defined(__DOXYGEN__) #define H_LOCK(h) chMtxLock(&(h)->mtx) #define H_UNLOCK(h) chMtxUnlock(&(h)->mtx) #else #define H_LOCK(h) (void) chSemWait(&(h)->sem) #define H_UNLOCK(h) chSemSignal(&(h)->sem) #endif #define H_BLOCK(hp) ((hp) + 1U) #define H_LIMIT(hp) (H_BLOCK(hp) + H_PAGES(hp)) #define H_NEXT(hp) ((hp)->free.next) #define H_PAGES(hp) ((hp)->free.pages) #define H_HEAP(hp) ((hp)->used.heap) #define H_SIZE(hp) ((hp)->used.size) /* * Number of pages between two pointers in a MISRA-compatible way. */ #define NPAGES(p1, p2) \ /*lint -save -e9033 [10.8] The cast is safe.*/ \ ((size_t)((p1) - (p2))) \ /*lint -restore*/ /*===========================================================================*/ /* Module exported variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Module local types. */ /*===========================================================================*/ /*===========================================================================*/ /* Module local variables. */ /*===========================================================================*/ /** * @brief Default heap descriptor. */ static memory_heap_t default_heap; /*===========================================================================*/ /* Module local functions. */ /*===========================================================================*/ /*===========================================================================*/ /* Module exported functions. */ /*===========================================================================*/ /** * @brief Initializes the default heap. * * @notapi */ void _heap_init(void) { default_heap.provider = chCoreAllocAlignedWithOffset; H_NEXT(&default_heap.header) = NULL; H_PAGES(&default_heap.header) = 0; #if (CH_CFG_USE_MUTEXES == TRUE) || defined(__DOXYGEN__) chMtxObjectInit(&default_heap.mtx); #else chSemObjectInit(&default_heap.sem, (cnt_t)1); #endif } /** * @brief Initializes a memory heap from a static memory area. * @note The heap buffer base and size are adjusted if the passed buffer * is not aligned to @p CH_HEAP_ALIGNMENT. This mean that the * effective heap size can be less than @p size. * * @param[out] heapp pointer to the memory heap descriptor to be initialized * @param[in] buf heap buffer base * @param[in] size heap size * * @init */ void chHeapObjectInit(memory_heap_t *heapp, void *buf, size_t size) { heap_header_t *hp = (heap_header_t *)MEM_ALIGN_NEXT(buf, CH_HEAP_ALIGNMENT); chDbgCheck((heapp != NULL) && (size > 0U)); /* Adjusting the size in case the initial block was not correctly aligned.*/ size -= (size_t)((uint8_t *)hp - (uint8_t *)buf); /* Initializing the heap header.*/ heapp->provider = NULL; H_NEXT(&heapp->header) = hp; H_PAGES(&heapp->header) = 0; H_NEXT(hp) = NULL; H_PAGES(hp) = (size - sizeof (heap_header_t)) / CH_HEAP_ALIGNMENT; #if (CH_CFG_USE_MUTEXES == TRUE) || defined(__DOXYGEN__) chMtxObjectInit(&heapp->mtx); #else chSemObjectInit(&heapp->sem, (cnt_t)1); #endif } /** * @brief Allocates a block of memory from the heap by using the first-fit * algorithm. * @details The allocated block is guaranteed to be properly aligned to the * specified alignment. * * @param[in] heapp pointer to a heap descriptor or @p NULL in order to * access the default heap. * @param[in] size the size of the block to be allocated. Note that the * allocated block may be a bit bigger than the requested * size for alignment and fragmentation reasons. * @param[in] align desired memory alignment * @return A pointer to the aligned allocated block. * @retval NULL if the block cannot be allocated. * * @api */ void *chHeapAllocAligned(memory_heap_t *heapp, size_t size, unsigned align) { heap_header_t *qp, *hp, *ahp; size_t pages; chDbgCheck((size > 0U) && MEM_IS_VALID_ALIGNMENT(align)); /* If an heap is not specified then the default system header is used.*/ if (heapp == NULL) { heapp = &default_heap; } /* Minimum alignment is constrained by the heap header structure size.*/ if (align < CH_HEAP_ALIGNMENT) { align = CH_HEAP_ALIGNMENT; } /* Size is converted in number of elementary allocation units.*/ pages = MEM_ALIGN_NEXT(size, CH_HEAP_ALIGNMENT) / CH_HEAP_ALIGNMENT; /* Taking heap mutex/semaphore.*/ H_LOCK(heapp); /* Start of the free blocks list.*/ qp = &heapp->header; while (H_NEXT(qp) != NULL) { /* Next free block.*/ hp = H_NEXT(qp); /* Pointer aligned to the requested alignment.*/ ahp = (heap_header_t *)MEM_ALIGN_NEXT(H_BLOCK(hp), align) - 1U; if ((ahp < H_LIMIT(hp)) && (pages <= NPAGES(H_LIMIT(hp), ahp + 1U))) { /* The block is large enough to contain a correctly aligned area of sufficient size.*/ if (ahp > hp) { /* The block is not properly aligned, must split it.*/ size_t bpages; bpages = NPAGES(H_LIMIT(hp), H_BLOCK(ahp)); H_PAGES(hp) = NPAGES(ahp, H_BLOCK(hp)); if (bpages > pages) { /* The block is bigger than required, must split the excess.*/ heap_header_t *fp; /* Creating the excess block.*/ fp = H_BLOCK(ahp) + pages; H_PAGES(fp) = (bpages - pages) - 1U; /* Linking the excess block.*/ H_NEXT(fp) = H_NEXT(hp); H_NEXT(hp) = fp; } hp = ahp; } else { /* The block is already properly aligned.*/ if (H_PAGES(hp) == pages) { /* Exact size, getting the whole block.*/ H_NEXT(qp) = H_NEXT(hp); } else { /* The block is bigger than required, must split the excess.*/ heap_header_t *fp; fp = H_BLOCK(hp) + pages; H_NEXT(fp) = H_NEXT(hp); H_PAGES(fp) = NPAGES(H_LIMIT(hp), H_BLOCK(fp)); H_NEXT(qp) = fp; } } /* Setting in the block owner heap and size.*/ H_SIZE(hp) = size; H_HEAP(hp) = heapp; /* Releasing heap mutex/semaphore.*/ H_UNLOCK(heapp); /*lint -save -e9087 [11.3] Safe cast.*/ return (void *)H_BLOCK(hp); /*lint -restore*/ } /* Next in the free blocks list.*/ qp = hp; } /* Releasing heap mutex/semaphore.*/ H_UNLOCK(heapp); /* More memory is required, tries to get it from the associated provider else fails.*/ if (heapp->provider != NULL) { ahp = heapp->provider((pages + 1U) * CH_HEAP_ALIGNMENT, align, sizeof (heap_header_t)); if (ahp != NULL) { hp = ahp - 1U; H_HEAP(hp) = heapp; H_SIZE(hp) = size; /*lint -save -e9087 [11.3] Safe cast.*/ return (void *)ahp; /*lint -restore*/ } } return NULL; } /** * @brief Frees a previously allocated memory block. * * @param[in] p pointer to the memory block to be freed * * @api */ void chHeapFree(void *p) { heap_header_t *qp, *hp; memory_heap_t *heapp; chDbgCheck((p != NULL) && MEM_IS_ALIGNED(p, CH_HEAP_ALIGNMENT)); /*lint -save -e9087 [11.3] Safe cast.*/ hp = (heap_header_t *)p - 1U; /*lint -restore*/ heapp = H_HEAP(hp); qp = &heapp->header; /* Size is converted in number of elementary allocation units.*/ H_PAGES(hp) = MEM_ALIGN_NEXT(H_SIZE(hp), CH_HEAP_ALIGNMENT) / CH_HEAP_ALIGNMENT; /* Taking heap mutex/semaphore.*/ H_LOCK(heapp); while (true) { chDbgAssert((hp < qp) || (hp >= H_LIMIT(qp)), "within free block"); if (((qp == &heapp->header) || (hp > qp)) && ((H_NEXT(qp) == NULL) || (hp < H_NEXT(qp)))) { /* Insertion after qp.*/ H_NEXT(hp) = H_NEXT(qp); H_NEXT(qp) = hp; /* Verifies if the newly inserted block should be merged.*/ if (H_LIMIT(hp) == H_NEXT(hp)) { /* Merge with the next block.*/ H_PAGES(hp) += H_PAGES(H_NEXT(hp)) + 1U; H_NEXT(hp) = H_NEXT(H_NEXT(hp)); } if ((H_LIMIT(qp) == hp)) { /* Merge with the previous block.*/ H_PAGES(qp) += H_PAGES(hp) + 1U; H_NEXT(qp) = H_NEXT(hp); } break; } qp = H_NEXT(qp); } /* Releasing heap mutex/semaphore.*/ H_UNLOCK(heapp); return; } /** * @brief Reports the heap status. * @note This function is meant to be used in the test suite, it should * not be really useful for the application code. * * @param[in] heapp pointer to a heap descriptor or @p NULL in order to * access the default heap. * @param[in] totalp pointer to a variable that will receive the total * fragmented free space or @ NULL * @param[in] largestp pointer to a variable that will receive the largest * free free block found space or @ NULL * @return The number of fragments in the heap. * * @api */ size_t chHeapStatus(memory_heap_t *heapp, size_t *totalp, size_t *largestp) { heap_header_t *qp; size_t n, tpages, lpages; if (heapp == NULL) { heapp = &default_heap; } H_LOCK(heapp); tpages = 0U; lpages = 0U; n = 0U; qp = &heapp->header; while (H_NEXT(qp) != NULL) { size_t pages = H_PAGES(H_NEXT(qp)); /* Updating counters.*/ n++; tpages += pages; if (pages > lpages) { lpages = pages; } qp = H_NEXT(qp); } /* Writing out fragmented free memory.*/ if (totalp != NULL) { *totalp = tpages * CH_HEAP_ALIGNMENT; } /* Writing out unfragmented free memory.*/ if (largestp != NULL) { *largestp = lpages * CH_HEAP_ALIGNMENT; } H_UNLOCK(heapp); return n; } #endif /* CH_CFG_USE_HEAP == TRUE */ /** @} */