/**************************************************************************//** * @file cmsis_armcc.h * @brief CMSIS compiler specific macros, functions, instructions * @version V1.00 * @date 22. Feb 2017 ******************************************************************************/ /* * Copyright (c) 2009-2017 ARM Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __CMSIS_ARMCC_H #define __CMSIS_ARMCC_H #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677) #error "Please use ARM Compiler Toolchain V4.0.677 or later!" #endif /* CMSIS compiler control architecture macros */ #if (defined (__TARGET_ARCH_7_A ) && (__TARGET_ARCH_7_A == 1)) #define __ARM_ARCH_7A__ 1 #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE __inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static __inline #endif #ifndef __NO_RETURN #define __NO_RETURN __declspec(noreturn) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed)) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT __packed struct #endif #ifndef __UNALIGNED_UINT16_WRITE #define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr))) #endif #ifndef __UNALIGNED_UINT32_WRITE #define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr))) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __PACKED #define __PACKED __attribute__((packed)) #endif /* ########################### Core Function Access ########################### */ /** \brief Get FPSCR (Floating Point Status/Control) \return Floating Point Status/Control register value */ __STATIC_INLINE uint32_t __get_FPSCR(void) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) register uint32_t __regfpscr __ASM("fpscr"); return(__regfpscr); #else return(0U); #endif } /** \brief Set FPSCR (Floating Point Status/Control) \param [in] fpscr Floating Point Status/Control value to set */ __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) register uint32_t __regfpscr __ASM("fpscr"); __regfpscr = (fpscr); #else (void)fpscr; #endif } /* ########################## Core Instruction Access ######################### */ /** \brief No Operation */ #define __NOP __nop /** \brief Wait For Interrupt */ #define __WFI __wfi /** \brief Wait For Event */ #define __WFE __wfe /** \brief Send Event */ #define __SEV __sev /** \brief Instruction Synchronization Barrier */ #define __ISB() do {\ __schedule_barrier();\ __isb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Data Synchronization Barrier */ #define __DSB() do {\ __schedule_barrier();\ __dsb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Data Memory Barrier */ #define __DMB() do {\ __schedule_barrier();\ __dmb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Reverse byte order (32 bit) \param [in] value Value to reverse \return Reversed value */ #define __REV __rev /** \brief Reverse byte order (16 bit) \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) { rev16 r0, r0 bx lr } #endif /** \brief Reverse byte order in signed short value \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value) { revsh r0, r0 bx lr } #endif /** \brief Rotate Right in unsigned value (32 bit) \param [in] op1 Value to rotate \param [in] op2 Number of Bits to rotate \return Rotated value */ #define __ROR __ror /** \brief Breakpoint \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __breakpoint(value) /** \brief Reverse bit order of value \param [in] value Value to reverse \return Reversed value */ #define __RBIT __rbit /** \brief Count leading zeros \param [in] value Value to count the leading zeros \return number of leading zeros in value */ #define __CLZ __clz /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) #else #define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop") #endif /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) #else #define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop") #endif /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) #else #define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop") #endif /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXB(value, ptr) __strex(value, ptr) #else #define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXH(value, ptr) __strex(value, ptr) #else #define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXW(value, ptr) __strex(value, ptr) #else #define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ #define __CLREX __clrex /** \brief Get CPSR (Current Program Status Register) \return CPSR Register value */ __STATIC_INLINE uint32_t __get_CPSR(void) { register uint32_t __regCPSR __ASM("cpsr"); return(__regCPSR); } /** \brief Set CPSR (Current Program Status Register) \param [in] cpsr CPSR value to set */ __STATIC_INLINE void __set_CPSR(uint32_t cpsr) { register uint32_t __regCPSR __ASM("cpsr"); __regCPSR = cpsr; } /** \brief Get Mode \return Processor Mode */ __STATIC_INLINE uint32_t __get_mode(void) { return (__get_CPSR() & 0x1FU); } /** \brief Set Mode \param [in] mode Mode value to set */ __STATIC_INLINE __ASM void __set_mode(uint32_t mode) { MOV r1, lr MSR CPSR_C, r0 BX r1 } /** \brief Set Stack Pointer \param [in] stack Stack Pointer value to set */ __STATIC_INLINE __ASM void __set_SP(uint32_t stack) { MOV sp, r0 BX lr } /** \brief Set USR/SYS Stack Pointer \param [in] topOfProcStack USR/SYS Stack Pointer value to set */ __STATIC_INLINE __ASM void __set_SP_usr(uint32_t topOfProcStack) { ARM PRESERVE8 BIC R0, R0, #7 ;ensure stack is 8-byte aligned MRS R1, CPSR CPS #0x1F ;no effect in USR mode MOV SP, R0 MSR CPSR_c, R1 ;no effect in USR mode ISB BX LR } /** \brief Get FPEXC (Floating Point Exception Control Register) \return Floating Point Exception Control Register value */ __STATIC_INLINE uint32_t __get_FPEXC(void) { #if (__FPU_PRESENT == 1) register uint32_t __regfpexc __ASM("fpexc"); return(__regfpexc); #else return(0); #endif } /** \brief Set FPEXC (Floating Point Exception Control Register) \param [in] fpexc Floating Point Exception Control value to set */ __STATIC_INLINE void __set_FPEXC(uint32_t fpexc) { #if (__FPU_PRESENT == 1) register uint32_t __regfpexc __ASM("fpexc"); __regfpexc = (fpexc); #endif } /** \brief Get ACTLR (Auxiliary Control Register) \return Auxiliary Control Register value */ __STATIC_INLINE uint32_t __get_ACTLR(void) { register uint32_t __regACTLR __ASM("cp15:0:c1:c0:1"); return __regACTLR; } /** \brief Set ACTLR (Auxiliary Control Register) \param [in] actlr Auxiliary Control value to set */ __STATIC_INLINE void __set_ACTLR(uint32_t actlr) { register uint32_t __regACTLR __ASM("cp15:0:c1:c0:1"); __regACTLR = actlr; } /** \brief Get CPACR (Coprocessor Access Control Register) \return Coprocessor Access Control Register value */ __STATIC_INLINE uint32_t __get_CPACR(void) { register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2"); return __regCPACR; } /** \brief Set CPACR (Coprocessor Access Control Register) \param [in] cpacr Coprocessor Access Control value to set */ __STATIC_INLINE void __set_CPACR(uint32_t cpacr) { register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2"); __regCPACR = cpacr; } /** \brief Get DFSR (Data Fault Status Register) \return Data Fault Status Register value */ __STATIC_INLINE uint32_t __get_DFSR(void) { register uint32_t __regDFSR __ASM("cp15:0:c5:c0:0"); return __regDFSR; } /** \brief Set DFSR (Data Fault Status Register) \param [in] dfsr Data Fault Status value to set */ __STATIC_INLINE void __set_DFSR(uint32_t dfsr) { register uint32_t __regDFSR __ASM("cp15:0:c5:c0:0"); __regDFSR = dfsr; } /** \brief Get IFSR (Instruction Fault Status Register) \return Instruction Fault Status Register value */ __STATIC_INLINE uint32_t __get_IFSR(void) { register uint32_t __regIFSR __ASM("cp15:0:c5:c0:1"); return __regIFSR; } /** \brief Set IFSR (Instruction Fault Status Register) \param [in] ifsr Instruction Fault Status value to set */ __STATIC_INLINE void __set_IFSR(uint32_t ifsr) { register uint32_t __regIFSR __ASM("cp15:0:c5:c0:1"); __regIFSR = ifsr; } /** \brief Get ISR (Interrupt Status Register) \return Interrupt Status Register value */ __STATIC_INLINE uint32_t __get_ISR(void) { register uint32_t __regISR __ASM("cp15:0:c5:c0:1"); return __regISR; } /** \brief Get CBAR (Configuration Base Address Register) \return Configuration Base Address Register value */ __STATIC_INLINE uint32_t __get_CBAR() { register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0"); return(__regCBAR); } /** \brief Get TTBR0 (Translation Table Base Register 0) \return Translation Table Base Register 0 value */ __STATIC_INLINE uint32_t __get_TTBR0() { register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0"); return(__regTTBR0); } /** \brief Set TTBR0 Translation Table Base Register 0 \param [in] ttbr0 Translation Table Base Register 0 value to set */ __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) { register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0"); __regTTBR0 = ttbr0; } /** \brief Get DACR (Domain Access Control Register) \return Domain Access Control Register value */ __STATIC_INLINE uint32_t __get_DACR() { register uint32_t __regDACR __ASM("cp15:0:c3:c0:0"); return(__regDACR); } /** \brief Set DACR (Domain Access Control Register) \param [in] dacr Domain Access Control Register value to set */ __STATIC_INLINE void __set_DACR(uint32_t dacr) { register uint32_t __regDACR __ASM("cp15:0:c3:c0:0"); __regDACR = dacr; } /** \brief Set SCTLR (System Control Register). \param [in] sctlr System Control Register value to set */ __STATIC_INLINE void __set_SCTLR(uint32_t sctlr) { register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0"); __regSCTLR = sctlr; } /** \brief Get SCTLR (System Control Register). \return System Control Register value */ __STATIC_INLINE uint32_t __get_SCTLR() { register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0"); return(__regSCTLR); } /** \brief Set ACTRL (Auxiliary Control Register) \param [in] actrl Auxiliary Control Register value to set */ __STATIC_INLINE void __set_ACTRL(uint32_t actrl) { register uint32_t __regACTRL __ASM("cp15:0:c1:c0:1"); __regACTRL = actrl; } /** \brief Get ACTRL (Auxiliary Control Register) \return Auxiliary Control Register value */ __STATIC_INLINE uint32_t __get_ACTRL(void) { register uint32_t __regACTRL __ASM("cp15:0:c1:c0:1"); return(__regACTRL); } /** \brief Get MPIDR (Multiprocessor Affinity Register) \return Multiprocessor Affinity Register value */ __STATIC_INLINE uint32_t __get_MPIDR(void) { register uint32_t __regMPIDR __ASM("cp15:0:c0:c0:5"); return(__regMPIDR); } /** \brief Get VBAR (Vector Base Address Register) \return Vector Base Address Register */ __STATIC_INLINE uint32_t __get_VBAR(void) { register uint32_t __regVBAR __ASM("cp15:0:c12:c0:0"); return(__regVBAR); } /** \brief Set VBAR (Vector Base Address Register) \param [in] vbar Vector Base Address Register value to set */ __STATIC_INLINE void __set_VBAR(uint32_t vbar) { register uint32_t __regVBAR __ASM("cp15:0:c12:c0:0"); __regVBAR = vbar; } /** \brief Set CNTFRQ (Counter Frequency Register) \param [in] value CNTFRQ Register value to set */ __STATIC_INLINE void __set_CNTFRQ(uint32_t value) { register uint32_t __regCNTFRQ __ASM("cp15:0:c14:c0:0"); __regCNTFRQ = value; } /** \brief Set CNTP_TVAL (PL1 Physical TimerValue Register) \param [in] value CNTP_TVAL Register value to set */ __STATIC_INLINE void __set_CNTP_TVAL(uint32_t value) { register uint32_t __regCNTP_TVAL __ASM("cp15:0:c14:c2:0"); __regCNTP_TVAL = value; } /** \brief Get CNTP_TVAL (PL1 Physical TimerValue Register) \return CNTP_TVAL Register value */ __STATIC_INLINE uint32_t __get_CNTP_TVAL() { register uint32_t __regCNTP_TVAL __ASM("cp15:0:c14:c2:0"); return(__regCNTP_TVAL); } /** \brief Set CNTP_CTL (PL1 Physical Timer Control Register) \param [in] value CNTP_CTL Register value to set */ __STATIC_INLINE void __set_CNTP_CTL(uint32_t value) { register uint32_t __regCNTP_CTL __ASM("cp15:0:c14:c2:1"); __regCNTP_CTL = value; } /** \brief Get CNTP_CTL register \return CNTP_CTL Register value */ __STATIC_INLINE uint32_t __get_CNTP_CTL() { register uint32_t __regCNTP_CTL __ASM("cp15:0:c14:c2:1"); return(__regCNTP_CTL); } /** \brief Set TLBIALL (Invalidate Entire Unified TLB) */ __STATIC_INLINE void __set_TLBIALL(uint32_t value) { register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0"); __TLBIALL = value; } /** \brief Set BPIALL (Branch Predictor Invalidate All) * \param [in] value BPIALL value to set */ __STATIC_INLINE void __set_BPIALL(uint32_t value) { register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6"); __BPIALL = value; } /** \brief Set ICIALLU (Instruction Cache Invalidate All) * \param [in] value ICIALLU value to set */ __STATIC_INLINE void __set_ICIALLU(uint32_t value) { register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0"); __ICIALLU = value; } /** \brief Set DCCMVAC (Clean data or unified cache line by MVA to PoC) * \param [in] value DCCMVAC value to set */ __STATIC_INLINE void __set_DCCMVAC(uint32_t value) { register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1"); __DCCMVAC = value; } /** \brief Set DCIMVAC (Invalidate data or unified cache line by MVA to PoC) * \param [in] value DCIMVAC value to set */ __STATIC_INLINE void __set_DCIMVAC(uint32_t value) { register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1"); __DCIMVAC = value; } /** \brief Set DCCIMVAC (Clean and Invalidate data or unified cache line by MVA to PoC) * \param [in] value DCCIMVAC value to set */ __STATIC_INLINE void __set_DCCIMVAC(uint32_t value) { register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1"); __DCCIMVAC = value; } /** \brief Clean and Invalidate the entire data or unified cache * \param [in] op 0 - invalidate, 1 - clean, otherwise - invalidate and clean */ __STATIC_INLINE __ASM void __L1C_CleanInvalidateCache(uint32_t op) { ARM PUSH {R4-R11} MRC p15, 1, R6, c0, c0, 1 // Read CLIDR ANDS R3, R6, #0x07000000 // Extract coherency level MOV R3, R3, LSR #23 // Total cache levels << 1 BEQ Finished // If 0, no need to clean MOV R10, #0 // R10 holds current cache level << 1 Loop1 ADD R2, R10, R10, LSR #1 // R2 holds cache "Set" position MOV R1, R6, LSR R2 // Bottom 3 bits are the Cache-type for this level AND R1, R1, #7 // Isolate those lower 3 bits CMP R1, #2 BLT Skip // No cache or only instruction cache at this level MCR p15, 2, R10, c0, c0, 0 // Write the Cache Size selection register ISB // ISB to sync the change to the CacheSizeID reg MRC p15, 1, R1, c0, c0, 0 // Reads current Cache Size ID register AND R2, R1, #7 // Extract the line length field ADD R2, R2, #4 // Add 4 for the line length offset (log2 16 bytes) LDR R4, =0x3FF ANDS R4, R4, R1, LSR #3 // R4 is the max number on the way size (right aligned) CLZ R5, R4 // R5 is the bit position of the way size increment LDR R7, =0x7FFF ANDS R7, R7, R1, LSR #13 // R7 is the max number of the index size (right aligned) Loop2 MOV R9, R4 // R9 working copy of the max way size (right aligned) Loop3 ORR R11, R10, R9, LSL R5 // Factor in the Way number and cache number into R11 ORR R11, R11, R7, LSL R2 // Factor in the Set number CMP R0, #0 BNE Dccsw MCR p15, 0, R11, c7, c6, 2 // DCISW. Invalidate by Set/Way B cont Dccsw CMP R0, #1 BNE Dccisw MCR p15, 0, R11, c7, c10, 2 // DCCSW. Clean by Set/Way B cont Dccisw MCR p15, 0, R11, c7, c14, 2 // DCCISW. Clean and Invalidate by Set/Way cont SUBS R9, R9, #1 // Decrement the Way number BGE Loop3 SUBS R7, R7, #1 // Decrement the Set number BGE Loop2 Skip ADD R10, R10, #2 // Increment the cache number CMP R3, R10 BGT Loop1 Finished DSB POP {R4-R11} BX lr } /** \brief Enable Floating Point Unit Critical section, called from undef handler, so systick is disabled */ __STATIC_INLINE __ASM void __FPU_Enable(void) { ARM //Permit access to VFP/NEON, registers by modifying CPACR MRC p15,0,R1,c1,c0,2 ORR R1,R1,#0x00F00000 MCR p15,0,R1,c1,c0,2 //Ensure that subsequent instructions occur in the context of VFP/NEON access permitted ISB //Enable VFP/NEON VMRS R1,FPEXC ORR R1,R1,#0x40000000 VMSR FPEXC,R1 //Initialise VFP/NEON registers to 0 MOV R2,#0 IF {TARGET_FEATURE_EXTENSION_REGISTER_COUNT} >= 16 //Initialise D16 registers to 0 VMOV D0, R2,R2 VMOV D1, R2,R2 VMOV D2, R2,R2 VMOV D3, R2,R2 VMOV D4, R2,R2 VMOV D5, R2,R2 VMOV D6, R2,R2 VMOV D7, R2,R2 VMOV D8, R2,R2 VMOV D9, R2,R2 VMOV D10,R2,R2 VMOV D11,R2,R2 VMOV D12,R2,R2 VMOV D13,R2,R2 VMOV D14,R2,R2 VMOV D15,R2,R2 ENDIF IF {TARGET_FEATURE_EXTENSION_REGISTER_COUNT} == 32 //Initialise D32 registers to 0 VMOV D16,R2,R2 VMOV D17,R2,R2 VMOV D18,R2,R2 VMOV D19,R2,R2 VMOV D20,R2,R2 VMOV D21,R2,R2 VMOV D22,R2,R2 VMOV D23,R2,R2 VMOV D24,R2,R2 VMOV D25,R2,R2 VMOV D26,R2,R2 VMOV D27,R2,R2 VMOV D28,R2,R2 VMOV D29,R2,R2 VMOV D30,R2,R2 VMOV D31,R2,R2 ENDIF //Initialise FPSCR to a known state VMRS R2,FPSCR LDR R3,=0x00086060 //Mask off all bits that do not have to be preserved. Non-preserved bits can/should be zero. AND R2,R2,R3 VMSR FPSCR,R2 BX LR } #endif /* __CMSIS_ARMCC_H */