/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "ch.h" #include "hal.h" #include "test.h" #include "chprintf.h" #include "shell.h" #include "lis302dl.h" #include "usbcfg.h" /* Virtual serial port over USB.*/ static SerialUSBDriver SDU1; /*===========================================================================*/ /* Command line related. */ /*===========================================================================*/ #define SHELL_WA_SIZE THD_WA_SIZE(2048) #define TEST_WA_SIZE THD_WA_SIZE(256) static void cmd_mem(BaseSequentialStream *chp, int argc, char *argv[]) { size_t n, size; (void)argv; if (argc > 0) { chprintf(chp, "Usage: mem\r\n"); return; } n = chHeapStatus(NULL, &size); chprintf(chp, "core free memory : %u bytes\r\n", chCoreStatus()); chprintf(chp, "heap fragments : %u\r\n", n); chprintf(chp, "heap free total : %u bytes\r\n", size); } static void cmd_threads(BaseSequentialStream *chp, int argc, char *argv[]) { static const char *states[] = {THD_STATE_NAMES}; Thread *tp; (void)argv; if (argc > 0) { chprintf(chp, "Usage: threads\r\n"); return; } chprintf(chp, " addr stack prio refs state time\r\n"); tp = chRegFirstThread(); do { chprintf(chp, "%.8lx %.8lx %4lu %4lu %9s %lu\r\n", (uint32_t)tp, (uint32_t)tp->p_ctx.r13, (uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1), states[tp->p_state], (uint32_t)tp->p_time); tp = chRegNextThread(tp); } while (tp != NULL); } static void cmd_test(BaseSequentialStream *chp, int argc, char *argv[]) { Thread *tp; (void)argv; if (argc > 0) { chprintf(chp, "Usage: test\r\n"); return; } tp = chThdCreateFromHeap(NULL, TEST_WA_SIZE, chThdGetPriority(), TestThread, chp); if (tp == NULL) { chprintf(chp, "out of memory\r\n"); return; } chThdWait(tp); } static const ShellCommand commands[] = { {"mem", cmd_mem}, {"threads", cmd_threads}, {"test", cmd_test}, {NULL, NULL} }; static const ShellConfig shell_cfg1 = { (BaseSequentialStream *)&SDU1, commands }; /*===========================================================================*/ /* Accelerometer related. */ /*===========================================================================*/ /* * PWM configuration structure. * Cyclic callback enabled, channels 1 and 4 enabled without callbacks, * the active state is a logic one. */ static const PWMConfig pwmcfg = { 100000, /* 100kHz PWM clock frequency. */ 128, /* PWM period is 128 cycles. */ NULL, { {PWM_OUTPUT_ACTIVE_HIGH, NULL}, {PWM_OUTPUT_ACTIVE_HIGH, NULL}, {PWM_OUTPUT_ACTIVE_HIGH, NULL}, {PWM_OUTPUT_ACTIVE_HIGH, NULL} }, /* HW dependent part.*/ 0 }; /* * SPI1 configuration structure. * Speed 5.25MHz, CPHA=1, CPOL=1, 8bits frames, MSb transmitted first. * The slave select line is the pin GPIOE_CS_SPI on the port GPIOE. */ static const SPIConfig spi1cfg = { NULL, /* HW dependent part.*/ GPIOE, GPIOE_CS_SPI, SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_CPOL | SPI_CR1_CPHA }; /* * SPI2 configuration structure. * Speed 21MHz, CPHA=0, CPOL=0, 8bits frames, MSb transmitted first. * The slave select line is the pin 12 on the port GPIOA. */ static const SPIConfig spi2cfg = { NULL, /* HW dependent part.*/ GPIOB, 12, 0 }; /* * This is a periodic thread that reads accelerometer and outputs * result to SPI2 and PWM. */ static WORKING_AREA(waThread1, 128); static msg_t Thread1(void *arg) { static int8_t xbuf[4], ybuf[4]; /* Last accelerometer data.*/ systime_t time; /* Next deadline.*/ (void)arg; chRegSetThreadName("reader"); /* LIS302DL initialization.*/ lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG1, 0x43); lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG2, 0x00); lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG3, 0x00); /* Reader thread loop.*/ time = chTimeNow(); while (TRUE) { int32_t x, y; unsigned i; /* Keeping an history of the latest four accelerometer readings.*/ for (i = 3; i > 0; i--) { xbuf[i] = xbuf[i - 1]; ybuf[i] = ybuf[i - 1]; } /* Reading MEMS accelerometer X and Y registers.*/ xbuf[0] = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTX); ybuf[0] = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTY); /* Transmitting accelerometer the data over SPI2.*/ spiSelect(&SPID2); spiSend(&SPID2, 4, xbuf); spiSend(&SPID2, 4, ybuf); spiUnselect(&SPID2); /* Calculating average of the latest four accelerometer readings.*/ x = ((int32_t)xbuf[0] + (int32_t)xbuf[1] + (int32_t)xbuf[2] + (int32_t)xbuf[3]) / 4; y = ((int32_t)ybuf[0] + (int32_t)ybuf[1] + (int32_t)ybuf[2] + (int32_t)ybuf[3]) / 4; /* Reprogramming the four PWM channels using the accelerometer data.*/ if (y < 0) { pwmEnableChannel(&PWMD4, 0, (pwmcnt_t)-y); pwmEnableChannel(&PWMD4, 2, (pwmcnt_t)0); } else { pwmEnableChannel(&PWMD4, 2, (pwmcnt_t)y); pwmEnableChannel(&PWMD4, 0, (pwmcnt_t)0); } if (x < 0) { pwmEnableChannel(&PWMD4, 1, (pwmcnt_t)-x); pwmEnableChannel(&PWMD4, 3, (pwmcnt_t)0); } else { pwmEnableChannel(&PWMD4, 3, (pwmcnt_t)x); pwmEnableChannel(&PWMD4, 1, (pwmcnt_t)0); } /* Waiting until the next 250 milliseconds time interval.*/ chThdSleepUntil(time += MS2ST(100)); } } /*===========================================================================*/ /* Initialization and main thread. */ /*===========================================================================*/ /* * Application entry point. */ int main(void) { Thread *shelltp = NULL; /* * System initializations. * - HAL initialization, this also initializes the configured device drivers * and performs the board-specific initializations. * - Kernel initialization, the main() function becomes a thread and the * RTOS is active. */ halInit(); chSysInit(); /* * Shell manager initialization. */ shellInit(); /* * Initializes a serial-over-USB CDC driver. */ sduObjectInit(&SDU1); sduStart(&SDU1, &serusbcfg); /* * Activates the USB driver and then the USB bus pull-up on D+. * Note, a delay is inserted in order to not have to disconnect the cable * after a reset. */ usbDisconnectBus(serusbcfg.usbp); chThdSleepMilliseconds(1000); usbStart(serusbcfg.usbp, &usbcfg); usbConnectBus(serusbcfg.usbp); /* * Activates the serial driver 2 using the driver default configuration. * PA2(TX) and PA3(RX) are routed to USART2. */ sdStart(&SD2, NULL); palSetPadMode(GPIOA, 2, PAL_MODE_ALTERNATE(7)); palSetPadMode(GPIOA, 3, PAL_MODE_ALTERNATE(7)); /* * Initializes the SPI driver 1 in order to access the MEMS. The signals * are already initialized in the board file. */ spiStart(&SPID1, &spi1cfg); /* * Initializes the SPI driver 2. The SPI2 signals are routed as follow: * PB12 - NSS. * PB13 - SCK. * PB14 - MISO. * PB15 - MOSI. */ spiStart(&SPID2, &spi2cfg); palSetPad(GPIOB, 12); palSetPadMode(GPIOB, 12, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); /* NSS. */ palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(5) | PAL_STM32_OSPEED_HIGHEST); /* SCK. */ palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(5)); /* MISO. */ palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(5) | PAL_STM32_OSPEED_HIGHEST); /* MOSI. */ /* * Initializes the PWM driver 4, routes the TIM4 outputs to the board LEDs. */ pwmStart(&PWMD4, &pwmcfg); palSetPadMode(GPIOD, GPIOD_LED4, PAL_MODE_ALTERNATE(2)); /* Green. */ palSetPadMode(GPIOD, GPIOD_LED3, PAL_MODE_ALTERNATE(2)); /* Orange. */ palSetPadMode(GPIOD, GPIOD_LED5, PAL_MODE_ALTERNATE(2)); /* Red. */ palSetPadMode(GPIOD, GPIOD_LED6, PAL_MODE_ALTERNATE(2)); /* Blue. */ /* * Creates the example thread. */ chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO + 10, Thread1, NULL); /* * Normal main() thread activity, in this demo it just performs * a shell respawn upon its termination. */ while (TRUE) { if (!shelltp) { if (SDU1.config->usbp->state == USB_ACTIVE) { /* Spawns a new shell.*/ shelltp = shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO); } } else { /* If the previous shell exited.*/ if (chThdTerminated(shelltp)) { /* Recovers memory of the previous shell.*/ chThdRelease(shelltp); shelltp = NULL; } } chThdSleepMilliseconds(500); } }