/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "ch.h" #include "hal.h" #include "test.h" static void pwmpcb(PWMDriver *pwmp); static void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n); static void spicb(SPIDriver *spip); /* Total number of channels to be sampled by a single ADC operation.*/ #define ADC_GRP1_NUM_CHANNELS 2 /* Depth of the conversion buffer, channels are sampled four times each.*/ #define ADC_GRP1_BUF_DEPTH 4 /* * ADC samples buffer. */ static adcsample_t samples[ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH]; /* * ADC conversion group. * Mode: Linear buffer, 4 samples of 2 channels, SW triggered. * Channels: IN10 (48 cycles sample time) * Sensor (192 cycles sample time) */ static const ADCConversionGroup adcgrpcfg = { FALSE, ADC_GRP1_NUM_CHANNELS, adccb, NULL, /* HW dependent part.*/ 0, 0, 0, ADC_SMPR2_SMP_AN10(ADC_SAMPLE_48) | ADC_SMPR2_SMP_SENSOR(ADC_SAMPLE_192), 0, ADC_SQR1_NUM_CH(ADC_GRP1_NUM_CHANNELS), 0, 0, 0, ADC_SQR5_SQ2_N(ADC_CHANNEL_IN10) | ADC_SQR5_SQ1_N(ADC_CHANNEL_SENSOR) }; /* * PWM configuration structure. * Cyclic callback enabled, channels 3 and 4 enabled without callbacks, * the active state is a logic one. */ static PWMConfig pwmcfg = { 10000, /* 10KHz PWM clock frequency. */ 10000, /* PWM period 1S (in ticks). */ pwmpcb, { {PWM_OUTPUT_ACTIVE_HIGH, NULL}, {PWM_OUTPUT_ACTIVE_HIGH, NULL}, {PWM_OUTPUT_DISABLED, NULL}, {PWM_OUTPUT_DISABLED, NULL} }, /* HW dependent part.*/ 0 }; /* * SPI configuration structure. * Maximum speed (12MHz), CPHA=0, CPOL=0, 16bits frames, MSb transmitted first. * The slave select line is the pin GPIOA_SPI1NSS on the port GPIOA. */ static const SPIConfig spicfg = { spicb, /* HW dependent part.*/ GPIOB, 12, SPI_CR1_DFF }; /* * PWM cyclic callback. * A new ADC conversion is started. */ static void pwmpcb(PWMDriver *pwmp) { (void)pwmp; /* Starts an asynchronous ADC conversion operation, the conversion will be executed in parallel to the current PWM cycle and will terminate before the next PWM cycle.*/ chSysLockFromIsr(); adcStartConversionI(&ADCD1, &adcgrpcfg, samples, ADC_GRP1_BUF_DEPTH); chSysUnlockFromIsr(); } /* * ADC end conversion callback. * The PWM channels are reprogrammed using the latest ADC samples. * The latest samples are transmitted into a single SPI transaction. */ void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n) { (void) buffer; (void) n; /* Note, only in the ADC_COMPLETE state because the ADC driver fires an intermediate callback when the buffer is half full.*/ if (adcp->state == ADC_COMPLETE) { adcsample_t avg_ch1, avg_ch2; /* Calculates the average values from the ADC samples.*/ avg_ch1 = (samples[0] + samples[2] + samples[4] + samples[6]) / 4; avg_ch2 = (samples[1] + samples[3] + samples[5] + samples[7]) / 4; chSysLockFromIsr(); /* Changes the channels pulse width, the change will be effective starting from the next cycle.*/ pwmEnableChannelI(&PWMD4, 0, PWM_FRACTION_TO_WIDTH(&PWMD4, 4096, avg_ch1)); pwmEnableChannelI(&PWMD4, 1, PWM_FRACTION_TO_WIDTH(&PWMD4, 4096, avg_ch2)); /* SPI slave selection and transmission start.*/ spiSelectI(&SPID2); spiStartSendI(&SPID2, ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH, samples); chSysUnlockFromIsr(); } } /* * SPI end transfer callback. */ static void spicb(SPIDriver *spip) { /* On transfer end just releases the slave select line.*/ chSysLockFromIsr(); spiUnselectI(spip); chSysUnlockFromIsr(); } /* * This is a periodic thread that does absolutely nothing except increasing * a seconds counter. */ static WORKING_AREA(waThread1, 128); static msg_t Thread1(void *arg) { static uint32_t seconds_counter; (void)arg; chRegSetThreadName("counter"); while (TRUE) { chThdSleepMilliseconds(1000); seconds_counter++; } } /* * Application entry point. */ int main(void) { /* * System initializations. * - HAL initialization, this also initializes the configured device drivers * and performs the board-specific initializations. * - Kernel initialization, the main() function becomes a thread and the * RTOS is active. */ halInit(); chSysInit(); /* * Activates the serial driver 1 using the driver default configuration. * PA9 and PA10 are routed to USART1. */ sdStart(&SD1, NULL); palSetPadMode(GPIOA, 9, PAL_MODE_ALTERNATE(7)); palSetPadMode(GPIOA, 10, PAL_MODE_ALTERNATE(7)); /* * If the user button is pressed after the reset then the test suite is * executed immediately before activating the various device drivers in * order to not alter the benchmark scores. */ if (palReadPad(GPIOA, GPIOA_BUTTON)) TestThread(&SD1); /* * Initializes the SPI driver 2. The SPI2 signals are routed as follow: * PB12 - NSS. * PB13 - SCK. * PB14 - MISO. * PB15 - MOSI. */ spiStart(&SPID2, &spicfg); palSetPad(GPIOB, 12); palSetPadMode(GPIOB, 12, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); /* NSS. */ palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(5) | PAL_STM32_OSPEED_HIGHEST); /* SCK. */ palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(5)); /* MISO. */ palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(5) | PAL_STM32_OSPEED_HIGHEST); /* MOSI. */ /* * Initializes the ADC driver 1 and enable the thermal sensor. * The pin PC0 on the port GPIOC is programmed as analog input. */ adcStart(&ADCD1, NULL); adcSTM32EnableTSVREFE(); palSetPadMode(GPIOC, 0, PAL_MODE_INPUT_ANALOG); /* * Initializes the PWM driver 4, routes the TIM4 outputs to the board LEDs. */ pwmStart(&PWMD4, &pwmcfg); palSetPadMode(GPIOB, GPIOB_LED4, PAL_MODE_ALTERNATE(2)); palSetPadMode(GPIOB, GPIOB_LED3, PAL_MODE_ALTERNATE(2)); /* * Creates the example thread. */ chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL); /* * Normal main() thread activity, in this demo it does nothing except * sleeping in a loop and check the button state, when the button is * pressed the test procedure is launched with output on the serial * driver 1. */ while (TRUE) { if (palReadPad(GPIOA, GPIOA_BUTTON)) TestThread(&SD1); chThdSleepMilliseconds(500); } }