/* Copyright (c) 2013 Timon Wong Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Copyright 2012 Uladzimir Pylinski aka barthess. You may use this work without restrictions, as long as this notice is included. The work is provided "as is" without warranty of any kind, neither express nor implied. */ /***************************************************************************** * DATASHEET NOTES ***************************************************************************** Write cycle time (byte or page) - 5 ms Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or page size and end at addresses that are integer multiples of [page size]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. *********************************************************************/ #include "hal_ee24xx.h" #include #if (defined(HAL_USE_EEPROM) && HAL_USE_EEPROM && EEPROM_USE_EE24XX) || defined(__DOXYGEN__) /* ****************************************************************************** * DEFINES ****************************************************************************** */ /* #if defined(SAM7_PLATFORM) #define EEPROM_I2C_CLOCK (MCK / (((i2cp->config->cwgr & 0xFF) + ((i2cp->config->cwgr >> 8) & 0xFF)) * (1 << ((i2cp->config->cwgr >> 16) & 7)) + 6)) #else #define EEPROM_I2C_CLOCK (i2cp->config->clock_speed) #endif */ #define EEPROM_I2C_CLOCK 400000 /* ****************************************************************************** * EXTERNS ****************************************************************************** */ /* ****************************************************************************** * GLOBAL VARIABLES ****************************************************************************** */ /* ******************************************************************************* * LOCAL FUNCTIONS ******************************************************************************* */ /** * @brief Split one uint16_t address to two uint8_t. * * @param[in] txbuf pointer to driver transmit buffer * @param[in] addr uint16_t address */ #define eeprom_split_addr(txbuf, addr){ \ (txbuf)[0] = ((uint8_t)((addr >> 8) & 0xFF)); \ (txbuf)[1] = ((uint8_t)(addr & 0xFF)); \ } /* ******************************************************************************* * EXPORTED FUNCTIONS ******************************************************************************* */ /** * @brief Calculates requred timeout. */ static systime_t calc_timeout(I2CDriver *i2cp, size_t txbytes, size_t rxbytes) { (void)i2cp; const uint32_t bitsinbyte = 10; uint32_t tmo; tmo = ((txbytes + rxbytes + 1) * bitsinbyte * 1000); tmo /= EEPROM_I2C_CLOCK; tmo += 10; /* some additional milliseconds to be safer */ return TIME_MS2I(tmo); } /** * @brief EEPROM read routine. * * @param[in] eepcfg pointer to configuration structure of eeprom file * @param[in] offset addres of 1-st byte to be read * @param[in] data pointer to buffer with data to be written * @param[in] len number of bytes to be red */ static msg_t eeprom_read(const I2CEepromFileConfig *eepcfg, uint32_t offset, uint8_t *data, size_t len) { msg_t status = MSG_RESET; systime_t tmo = calc_timeout(eepcfg->i2cp, 2, len); osalDbgAssert(((len <= eepcfg->size) && ((offset + len) <= eepcfg->size)), "out of device bounds"); eeprom_split_addr(eepcfg->write_buf, (offset + eepcfg->barrier_low)); #if I2C_USE_MUTUAL_EXCLUSION i2cAcquireBus(eepcfg->i2cp); #endif status = i2cMasterTransmitTimeout(eepcfg->i2cp, eepcfg->addr, eepcfg->write_buf, 2, data, len, tmo); #if I2C_USE_MUTUAL_EXCLUSION i2cReleaseBus(eepcfg->i2cp); #endif return status; } /** * @brief EEPROM write routine. * @details Function writes data to EEPROM. * @pre Data must be fit to single EEPROM page. * * @param[in] eepcfg pointer to configuration structure of eeprom file * @param[in] offset addres of 1-st byte to be write * @param[in] data pointer to buffer with data to be written * @param[in] len number of bytes to be written */ static msg_t eeprom_write(const I2CEepromFileConfig *eepcfg, uint32_t offset, const uint8_t *data, size_t len) { msg_t status = MSG_RESET; systime_t tmo = calc_timeout(eepcfg->i2cp, (len + 2), 0); osalDbgAssert(((len <= eepcfg->size) && ((offset + len) <= eepcfg->size)), "out of device bounds"); osalDbgAssert((((offset + eepcfg->barrier_low) / eepcfg->pagesize) == (((offset + eepcfg->barrier_low) + len - 1) / eepcfg->pagesize)), "data can not be fitted in single page"); /* write address bytes */ eeprom_split_addr(eepcfg->write_buf, (offset + eepcfg->barrier_low)); /* write data bytes */ memcpy(&(eepcfg->write_buf[2]), data, len); #if I2C_USE_MUTUAL_EXCLUSION i2cAcquireBus(eepcfg->i2cp); #endif status = i2cMasterTransmitTimeout(eepcfg->i2cp, eepcfg->addr, eepcfg->write_buf, (len + 2), NULL, 0, tmo); #if I2C_USE_MUTUAL_EXCLUSION i2cReleaseBus(eepcfg->i2cp); #endif /* wait until EEPROM process data */ chThdSleep(eepcfg->write_time); return status; } /** * @brief Determines and returns size of data that can be processed */ static size_t __clamp_size(void *ip, size_t n) { if (((size_t)eepfs_getposition(ip) + n) > (size_t)eepfs_getsize(ip)) return eepfs_getsize(ip) - eepfs_getposition(ip); else return n; } /** * @brief Write data that can be fitted in one page boundary */ static msg_t __fitted_write(void *ip, const uint8_t *data, size_t len, uint32_t *written) { msg_t status = MSG_RESET; osalDbgAssert(len > 0, "len must be greater than 0"); status = eeprom_write(((I2CEepromFileStream *)ip)->cfg, eepfs_getposition(ip), data, len); if (status == MSG_OK) { *written += len; eepfs_lseek(ip, eepfs_getposition(ip) + len); } return status; } /** * @brief Write data to EEPROM. * @details Only one EEPROM page can be written at once. So function * splits large data chunks in small EEPROM transactions if needed. * @note To achieve the maximum efficiency use write operations * aligned to EEPROM page boundaries. */ static size_t write(void *ip, const uint8_t *bp, size_t n) { size_t len = 0; /* bytes to be written per transaction */ uint32_t written = 0; /* total bytes successfully written */ uint16_t pagesize; uint32_t firstpage; uint32_t lastpage; osalDbgCheck((ip != NULL) && (((EepromFileStream *)ip)->vmt != NULL)); if (n == 0) return 0; n = __clamp_size(ip, n); if (n == 0) return 0; pagesize = ((EepromFileStream *)ip)->cfg->pagesize; firstpage = (((EepromFileStream *)ip)->cfg->barrier_low + eepfs_getposition(ip)) / pagesize; lastpage = (((EepromFileStream *)ip)->cfg->barrier_low + eepfs_getposition(ip) + n - 1) / pagesize; /* data fits in single page */ if (firstpage == lastpage) { len = n; __fitted_write(ip, bp, len, &written); return written; } else { /* write first piece of data to first page boundary */ len = ((firstpage + 1) * pagesize) - eepfs_getposition(ip); len -= ((EepromFileStream *)ip)->cfg->barrier_low; if (__fitted_write(ip, bp, len, &written) != MSG_OK) return written; bp += len; /* now write page sized blocks (zero or more) */ while ((n - written) > pagesize) { len = pagesize; if (__fitted_write(ip, bp, len, &written) != MSG_OK) return written; bp += len; } /* write tail */ len = n - written; if (len == 0) return written; else { __fitted_write(ip, bp, len, &written); } } return written; } /** * Read some bytes from current position in file. After successful * read operation the position pointer will be increased by the number * of read bytes. */ static size_t read(void *ip, uint8_t *bp, size_t n) { msg_t status = MSG_OK; osalDbgCheck((ip != NULL) && (((EepromFileStream *)ip)->vmt != NULL)); if (n == 0) return 0; n = __clamp_size(ip, n); if (n == 0) return 0; /* Stupid I2C cell in STM32F1x does not allow to read single byte. So we must read 2 bytes and return needed one. */ #if defined(STM32F1XX_I2C) if (n == 1) { uint8_t __buf[2]; /* if NOT last byte of file requested */ if ((eepfs_getposition(ip) + 1) < eepfs_getsize(ip)) { if (read(ip, __buf, 2) == 2) { eepfs_lseek(ip, (eepfs_getposition(ip) + 1)); bp[0] = __buf[0]; return 1; } else return 0; } else { eepfs_lseek(ip, (eepfs_getposition(ip) - 1)); if (read(ip, __buf, 2) == 2) { eepfs_lseek(ip, (eepfs_getposition(ip) + 2)); bp[0] = __buf[1]; return 1; } else return 0; } } #endif /* defined(STM32F1XX_I2C) */ /* call low level function */ status = eeprom_read(((I2CEepromFileStream *)ip)->cfg, eepfs_getposition(ip), bp, n); if (status != MSG_OK) return 0; else { eepfs_lseek(ip, (eepfs_getposition(ip) + n)); return n; } } static const struct EepromFileStreamVMT vmt = { (size_t)0, write, read, eepfs_put, eepfs_get, eepfs_close, eepfs_geterror, eepfs_getsize, eepfs_getposition, eepfs_lseek, }; EepromDevice eepdev_24xx = { EEPROM_DEV_24XX, &vmt }; #endif /* EEPROM_USE_EE24XX */