/* Copyright (C) 2014..2017 Marco Veeneman Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * @file SSI/hal_spi_lld.c * @brief TM4C123x/TM4C129x SPI subsystem low level driver. * * @addtogroup SPI * @{ */ #include "ch.h" #include "hal.h" #if HAL_USE_SPI || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** * @brief SPI1 driver identifier. */ #if TIVA_SPI_USE_SSI0 || defined(__DOXYGEN__) SPIDriver SPID1; #endif /** * @brief SPI2 driver identifier. */ #if TIVA_SPI_USE_SSI1 || defined(__DOXYGEN__) SPIDriver SPID2; #endif /** * @brief SPI3 driver identifier. */ #if TIVA_SPI_USE_SSI2 || defined(__DOXYGEN__) SPIDriver SPID3; #endif /** * @brief SPI4 driver identifier. */ #if TIVA_SPI_USE_SSI3 || defined(__DOXYGEN__) SPIDriver SPID4; #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ static uint16_t dummytx; static uint16_t dummyrx; /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Common IRQ handler. * * @param[in] spip pointer to the @p SPIDriver object */ static void spi_serve_interrupt(SPIDriver *spip) { uint32_t ssi = spip->ssi; uint32_t mis = HWREG(ssi + SSI_O_MIS); uint32_t dmachis = HWREG(UDMA_CHIS); /* SPI error handling.*/ if ((mis & (SSI_MIS_RORMIS | SSI_MIS_RTMIS)) != 0) { TIVA_SPI_SSI_ERROR_HOOK(spip); } if ((dmachis & ((1 << spip->dmarxnr) | (1 << spip->dmatxnr))) == (uint32_t)((1 << spip->dmarxnr) | (1 << spip->dmatxnr))) { /* Clear DMA Channel interrupts.*/ HWREG(UDMA_CHIS) = (1 << spip->dmarxnr) | (1 << spip->dmatxnr); /* Portable SPI ISR code defined in the high level driver, note, it is a macro.*/ _spi_isr_code(spip); } } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if TIVA_SPI_USE_SSI0 || defined(__DOXYGEN__) /** * @brief SSI0 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(TIVA_SSI0_HANDLER) { OSAL_IRQ_PROLOGUE(); spi_serve_interrupt(&SPID1); OSAL_IRQ_EPILOGUE(); } #endif #if TIVA_SPI_USE_SSI1 || defined(__DOXYGEN__) /** * @brief SSI1 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(TIVA_SSI1_HANDLER) { OSAL_IRQ_PROLOGUE(); spi_serve_interrupt(&SPID2); OSAL_IRQ_EPILOGUE(); } #endif #if TIVA_SPI_USE_SSI2 || defined(__DOXYGEN__) /** * @brief SSI2 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(TIVA_SSI2_HANDLER) { OSAL_IRQ_PROLOGUE(); spi_serve_interrupt(&SPID3); OSAL_IRQ_EPILOGUE(); } #endif #if TIVA_SPI_USE_SSI3 || defined(__DOXYGEN__) /** * @brief SSI3 interrupt handler. * * @isr */ OSAL_IRQ_HANDLER(TIVA_SSI3_HANDLER) { OSAL_IRQ_PROLOGUE(); spi_serve_interrupt(&SPID4); OSAL_IRQ_EPILOGUE(); } #endif /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level SPI driver initialization. * * @notapi */ void spi_lld_init(void) { dummytx = 0xFFFF; #if TIVA_SPI_USE_SSI0 spiObjectInit(&SPID1); SPID1.ssi = SSI0_BASE; SPID1.dmarxnr = TIVA_SPI_SSI0_RX_UDMA_CHANNEL; SPID1.dmatxnr = TIVA_SPI_SSI0_TX_UDMA_CHANNEL; SPID1.rxchnmap = TIVA_SPI_SSI0_RX_UDMA_MAPPING; SPID1.txchnmap = TIVA_SPI_SSI0_TX_UDMA_MAPPING; #endif #if TIVA_SPI_USE_SSI1 spiObjectInit(&SPID2); SPID2.ssi = SSI1_BASE; SPID2.dmarxnr = TIVA_SPI_SSI1_RX_UDMA_CHANNEL; SPID2.dmatxnr = TIVA_SPI_SSI1_TX_UDMA_CHANNEL; SPID2.rxchnmap = TIVA_SPI_SSI1_RX_UDMA_MAPPING; SPID2.txchnmap = TIVA_SPI_SSI1_TX_UDMA_MAPPING; #endif #if TIVA_SPI_USE_SSI2 spiObjectInit(&SPID3); SPID3.ssi = SSI2_BASE; SPID3.dmarxnr = TIVA_SPI_SSI2_RX_UDMA_CHANNEL; SPID3.dmatxnr = TIVA_SPI_SSI2_TX_UDMA_CHANNEL; SPID3.rxchnmap = TIVA_SPI_SSI2_RX_UDMA_MAPPING; SPID3.txchnmap = TIVA_SPI_SSI2_TX_UDMA_MAPPING; #endif #if TIVA_SPI_USE_SSI3 spiObjectInit(&SPID4); SPID4.ssi = SSI3_BASE; SPID4.dmarxnr = TIVA_SPI_SSI3_RX_UDMA_CHANNEL; SPID4.dmatxnr = TIVA_SPI_SSI3_TX_UDMA_CHANNEL; SPID4.rxchnmap = TIVA_SPI_SSI3_RX_UDMA_MAPPING; SPID4.txchnmap = TIVA_SPI_SSI3_TX_UDMA_MAPPING; #endif } /** * @brief Configures and activates the SPI peripheral. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_start(SPIDriver *spip) { if (spip->state == SPI_STOP) { /* Clock activation.*/ #if TIVA_SPI_USE_SSI0 if (&SPID1 == spip) { bool b; b = udmaChannelAllocate(spip->dmarxnr); osalDbgAssert(!b, "channel already allocated"); b = udmaChannelAllocate(spip->dmatxnr); osalDbgAssert(!b, "channel already allocated"); /* Enable SSI0 module.*/ HWREG(SYSCTL_RCGCSSI) |= (1 << 0); while (!(HWREG(SYSCTL_PRSSI) & (1 << 0))) ; nvicEnableVector(TIVA_SSI0_NUMBER, TIVA_SPI_SSI0_IRQ_PRIORITY); } #endif #if TIVA_SPI_USE_SSI1 if (&SPID2 == spip) { bool b; b = udmaChannelAllocate(spip->dmarxnr); osalDbgAssert(!b, "channel already allocated"); b = udmaChannelAllocate(spip->dmatxnr); osalDbgAssert(!b, "channel already allocated"); /* Enable SSI0 module.*/ HWREG(SYSCTL_RCGCSSI) |= (1 << 1); while (!(HWREG(SYSCTL_PRSSI) & (1 << 1))) ; nvicEnableVector(TIVA_SSI1_NUMBER, TIVA_SPI_SSI1_IRQ_PRIORITY); } #endif #if TIVA_SPI_USE_SSI2 if (&SPID2 == spip) { bool b; b = udmaChannelAllocate(spip->dmarxnr); osalDbgAssert(!b, "channel already allocated"); b = udmaChannelAllocate(spip->dmatxnr); osalDbgAssert(!b, "channel already allocated"); /* Enable SSI0 module.*/ HWREG(SYSCTL_RCGCSSI) |= (1 << 2); while (!(HWREG(SYSCTL_PRSSI) & (1 << 2))) ; nvicEnableVector(TIVA_SSI2_NUMBER, TIVA_SPI_SSI2_IRQ_PRIORITY); } #endif #if TIVA_SPI_USE_SSI3 if (&SPID2 == spip) { bool b; b = udmaChannelAllocate(spip->dmarxnr); osalDbgAssert(!b, "channel already allocated"); b = udmaChannelAllocate(spip->dmatxnr); osalDbgAssert(!b, "channel already allocated"); /* Enable SSI0 module.*/ HWREG(SYSCTL_RCGCSSI) |= (1 << 3); while (!(HWREG(SYSCTL_PRSSI) & (1 << 3))) ; nvicEnableVector(TIVA_SSI3_NUMBER, TIVA_SPI_SSI3_IRQ_PRIORITY); } #endif HWREG(UDMA_CHMAP0 + (spip->dmarxnr / 8) * 4) |= (spip->rxchnmap << (spip->dmarxnr % 8)); HWREG(UDMA_CHMAP0 + (spip->dmatxnr / 8) * 4) |= (spip->txchnmap << (spip->dmatxnr % 8)); } /* Set master operation mode.*/ HWREG(spip->ssi + SSI_O_CR1) = 0; /* Clock configuration - System Clock.*/ HWREG(spip->ssi + SSI_O_CC) = 0; /* Clear pending interrupts.*/ HWREG(spip->ssi + SSI_O_ICR) = SSI_ICR_RTIC | SSI_ICR_RORIC; /* Enable Receive Time-Out and Receive Overrun Interrupts.*/ HWREG(spip->ssi + SSI_O_IM) = SSI_IM_RTIM | SSI_IM_RORIM; /* Configure the clock prescale divisor.*/ HWREG(spip->ssi + SSI_O_CPSR) = spip->config->cpsr; /* Serial clock rate, phase/polarity, data size, fixed SPI frame format.*/ HWREG(spip->ssi + SSI_O_CR0) = (spip->config->cr0 & ~SSI_CR0_FRF_M) | SSI_CR0_FRF_MOTO; /* Enable SSI.*/ HWREG(spip->ssi + SSI_O_CR1) |= SSI_CR1_SSE; /* Enable RX and TX DMA channels.*/ HWREG(spip->ssi + SSI_O_DMACTL) = (SSI_DMACTL_TXDMAE | SSI_DMACTL_RXDMAE); } /** * @brief Deactivates the SPI peripheral. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_stop(SPIDriver *spip) { if (spip->state != SPI_STOP) { HWREG(spip->ssi + SSI_O_CR1) = 0; HWREG(spip->ssi + SSI_O_CR0) = 0; HWREG(spip->ssi + SSI_O_CPSR) = 0; udmaChannelRelease(spip->dmarxnr); udmaChannelRelease(spip->dmatxnr); #if TIVA_SPI_USE_SSI0 if (&SPID1 == spip) { nvicDisableVector(TIVA_SSI0_NUMBER); } #endif #if TIVA_SPI_USE_SSI1 if (&SPID2 == spip) { nvicDisableVector(TIVA_SSI1_NUMBER); } #endif #if TIVA_SPI_USE_SSI2 if (&SPID3 == spip) { nvicDisableVector(TIVA_SSI2_NUMBER); } #endif #if TIVA_SPI_USE_SSI3 if (&SPID4 == spip) { nvicDisableVector(TIVA_SSI3_NUMBER); } #endif } } #if (SPI_SELECT_MODE == SPI_SELECT_MODE_LLD) || defined(__DOXYGEN__) /** * @brief Asserts the slave select signal and prepares for transfers. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_select(SPIDriver *spip) { /* No implementation on Tiva.*/ } /** * @brief Deasserts the slave select signal. * @details The previously selected peripheral is unselected. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_unselect(SPIDriver *spip) { /* No implementation on Tiva.*/ } #endif /** * @brief Ignores data on the SPI bus. * @details This function transmits a series of idle words on the SPI bus and * ignores the received data. This function can be invoked even * when a slave select signal has not been yet asserted. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to be ignored * * @notapi */ void spi_lld_ignore(SPIDriver *spip, size_t n) { tiva_udma_table_entry_t *primary = udmaControlTable.primary; if ((spip->config->cr0 & SSI_CR0_DSS_M) < 8) { /* Configure for 8-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)&dummytx; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].srcendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].dstendp = &dummyrx; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } else { /* Configure for 16-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)&dummytx; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].srcendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].dstendp = &dummyrx; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } dmaChannelSingleBurst(spip->dmatxnr); dmaChannelPrimary(spip->dmatxnr); dmaChannelPriorityDefault(spip->dmatxnr); dmaChannelEnableRequest(spip->dmatxnr); dmaChannelSingleBurst(spip->dmarxnr); dmaChannelPrimary(spip->dmarxnr); dmaChannelPriorityDefault(spip->dmarxnr); dmaChannelEnableRequest(spip->dmarxnr); /* Enable DMA channels, when the TX channel is enabled the transfer starts.*/ dmaChannelEnable(spip->dmarxnr); dmaChannelEnable(spip->dmatxnr); } /** * @brief Exchanges data on the SPI bus. * @details This asynchronous function starts a simultaneous transmit/receive * operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to be exchanged * @param[in] txbuf the pointer to the transmit buffer * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void spi_lld_exchange(SPIDriver *spip, size_t n, const void *txbuf, void *rxbuf) { tiva_udma_table_entry_t *primary = udmaControlTable.primary; if ((spip->config->cr0 & SSI_CR0_DSS_M) < 8) { /* Configure for 8-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)txbuf+n-1; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_8 | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].srcendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].dstendp = rxbuf+n-1; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_8 | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } else { /* Configure for 16-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)txbuf+(n*2)-1; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_16 | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].srcendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].dstendp = rxbuf+(n*2)-1; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_16 | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } dmaChannelSingleBurst(spip->dmatxnr); dmaChannelPrimary(spip->dmatxnr); dmaChannelPriorityDefault(spip->dmatxnr); dmaChannelEnableRequest(spip->dmatxnr); dmaChannelSingleBurst(spip->dmarxnr); dmaChannelPrimary(spip->dmarxnr); dmaChannelPriorityDefault(spip->dmarxnr); dmaChannelEnableRequest(spip->dmarxnr); /* Enable DMA channels, when the TX channel is enabled the transfer starts.*/ dmaChannelEnable(spip->dmarxnr); dmaChannelEnable(spip->dmatxnr); } /** * @brief Sends data over the SPI bus. * @details This asynchronous function starts a transmit operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to send * @param[in] txbuf the pointer to the transmit buffer * * @notapi */ void spi_lld_send(SPIDriver *spip, size_t n, const void *txbuf) { tiva_udma_table_entry_t *primary = udmaControlTable.primary; if ((spip->config->cr0 & SSI_CR0_DSS_M) < 8) { /* Configure for 8-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)txbuf+n-1; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_8 | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].srcendp = &dummyrx; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } else { /* Configure for 16-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)txbuf+(n*2)-1; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_16 | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].srcendp = &dummyrx; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } dmaChannelSingleBurst(spip->dmatxnr); dmaChannelPrimary(spip->dmatxnr); dmaChannelPriorityDefault(spip->dmatxnr); dmaChannelEnableRequest(spip->dmatxnr); dmaChannelSingleBurst(spip->dmarxnr); dmaChannelPrimary(spip->dmarxnr); dmaChannelPriorityDefault(spip->dmarxnr); dmaChannelEnableRequest(spip->dmarxnr); /* Enable DMA channels, when the TX channel is enabled the transfer starts.*/ dmaChannelEnable(spip->dmarxnr); dmaChannelEnable(spip->dmatxnr); } /** * @brief Receives data from the SPI bus. * @details This asynchronous function starts a receive operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to receive * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void spi_lld_receive(SPIDriver *spip, size_t n, void *rxbuf) { tiva_udma_table_entry_t *primary = udmaControlTable.primary; if ((spip->config->cr0 & SSI_CR0_DSS_M) < 8) { /* Configure for 8-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)&dummytx; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].srcendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].dstendp = rxbuf+n-1; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_8 | UDMA_CHCTL_DSTINC_8 | UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } else { /* Configure for 16-bit transfers.*/ primary[spip->dmatxnr].srcendp = (volatile void *)&dummytx; primary[spip->dmatxnr].dstendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmatxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_NONE | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; primary[spip->dmarxnr].srcendp = (void *)(spip->ssi + SSI_O_DR); primary[spip->dmarxnr].dstendp = rxbuf+(n*2)-1; primary[spip->dmarxnr].chctl = UDMA_CHCTL_DSTSIZE_16 | UDMA_CHCTL_DSTINC_16 | UDMA_CHCTL_SRCSIZE_16 | UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_ARBSIZE_4 | UDMA_CHCTL_XFERSIZE(n) | UDMA_CHCTL_XFERMODE_BASIC; } dmaChannelSingleBurst(spip->dmatxnr); dmaChannelPrimary(spip->dmatxnr); dmaChannelPriorityDefault(spip->dmatxnr); dmaChannelEnableRequest(spip->dmatxnr); dmaChannelSingleBurst(spip->dmarxnr); dmaChannelPrimary(spip->dmarxnr); dmaChannelPriorityDefault(spip->dmarxnr); dmaChannelEnableRequest(spip->dmarxnr); /* Enable DMA channels, when the TX channel is enabled the transfer starts.*/ dmaChannelEnable(spip->dmarxnr); dmaChannelEnable(spip->dmatxnr); } /** * @brief Exchanges one frame using a polled wait. * @details This synchronous function exchanges one frame using a polled * synchronization method. This function is useful when exchanging * small amount of data on high speed channels, usually in this * situation is much more efficient just wait for completion using * polling than suspending the thread waiting for an interrupt. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] frame the data frame to send over the SPI bus * @return The received data frame from the SPI bus. */ uint16_t spi_lld_polled_exchange(SPIDriver *spip, uint16_t frame) { HWREG(spip->ssi + SSI_O_DR) = (uint32_t)frame; while ((HWREG(spip->ssi + SSI_O_SR) & SSI_SR_RNE) == 0) ; return (uint16_t)HWREG(spip->ssi + SSI_O_DR); } #endif /* HAL_USE_SPI */ /** @} */